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General introduction

Organization of the three next lectures

▶ Teaching assistant : Charles Truong ⟨ctruong@ens-paris-saclay.fr⟩

Teaching material: http://www.laurentoudre.fr/cyber.html
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General introduction

Outline of the three next lectures

▶ In several protocols, we are interested in monitoring the behavior of a subject
or a system over time

▶ This necessitates the use of adequate sensors and algorithms to extract
relevant information (features or events) that can be used to provide a
quantitive analysis of the phenomena of interest

▶ In order to conceive a good processing pipeline, several aspects must be taken
into account, such as the physical, mathematical and statistical properties of
the recorded data
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General introduction What is a time series ?

What is a time series?

▶ A time series is a series of data points indexed in time order
▶ In practice, array of real numbers of size D × N where D is the number of

dimensions and N the number of samples
▶ Sample number n

n 0 1 2 3 4 5 6

▶ Time series values x[n]
x[n] 0.7 0.2 0.8 0.9 0.3 0.2 0.7

0.4 0.1 0.6 0.2 0.5 0.6 0.3

▶ Timestamps t[n]
t[n] 16:30:01 16:30:23 16:31:43 16:32:38 16:33:06 16:33:16 16:33:56
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General introduction What is a time series ?

An un-unified field

▶ Different scientific communities have given different names to the same
mathematical object.
▶ Time series: mathematics, statistics, economics, finance…
▶ Signals: signal processing, physics, engineering, simulation…
▶ Sequences: computer sciences, bioinformatics, data mining…

▶ In this course, we will use indifferently one of these terms.
▶ Typical definition: real-valued (or at least ordered) sequential data
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General introduction What is a time series ?

Time series are everywhere

Meteorology,
Finance,

Healthcare,
Monitoring,
Epidemiology,

Sensor networks…
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General introduction What is a time series ?

Univariate vs. multivariate

2D/3D trajectories,
Multivariate time series,
Multimodal data from

sensor networks,
Graph signals
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General introduction What is a time series ?

Time series are complex

▶ Potentially massive data (e.g. sound : sampling frequency 44.1 kHz)
▶ Multivariate, multimodal, heterogeneous
▶ Noisy, missing data, trends, mixture of sources
▶ Often linked to an application context: data scientist is not trained to

understand the data
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General introduction What is a time series ?

Annotations and ground truth

▶ Contrary to basic image processing tasks (e.g. classification of cats and dogs),
annotating time series often require expertise

▶ Typical context:
▶ Noisy and dirty data
▶ A few annotated signals with blurry labels (confusing and hyper-specialized

annotations that cannot be transformed into class labels)
▶ An expert with several years in the business, but unable to translate it into

categorial annotations

How to perform quantitive analysis in this context?
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General introduction What is a time series ?

What about time?

▶ What is the difference between regular data and time series ? Notion of
sequence and chronology

▶ Each sample corresponds to the measurement of a phenomenon at a given
time stamp.

▶ Time allows to study the evolution of the phenomenon and should be taken
into account for processing the data

Laurent Oudre Data processing and e-health 2023-2024 12 / 222



General introduction What is a time series ?

What about time?
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General introduction What is a time series ?

World vs. Machine Learning
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▶ Most ML algorithms do not care for time.
▶ How can we still use the time information to extract relevant features/patterns

that can be used within a ML procedure ?
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General introduction Usecase of the tutorials
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General introduction Usecase of the tutorials

Gait analysis

Why is it important to study locomotion?
▶ Most common dynamic human activity
▶ Can reveal a large number of neurological, orthopedic, rheumatological

disorders…
▶ Strong influence on daily life : risk of falling, frailty, autonomy, dependency…
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General introduction Usecase of the tutorials

Gait analysis

How can we study locomotion?
▶ Early tests: clinical examination by the

physician, functional tests, clinical
questionnaires

+ Easy to perform, use of clinical
expertise

- Lack of precision, difficult to
objectively compare two sessions

▶ Dedicated platforms for the study of
locomotion: instrumented mats, video/optical
systems

+ Great precision, extraction of a
large number of useful features,

objective quantification

- Expensive, difficult to put in
practice
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General introduction Usecase of the tutorials

Main principles

⋆ Objective quantification of human gait
→ Use of sensors and physiological measurements

⋆ Longitudinal follow-up and inter-individual comparison
→ Need for a fixed protocol

⋆ Experimentation outside the laboratory and on the field
→ User-mounted sensors and fully automatic device for consultation and routine
use

⋆ Clean data
→ Control of the entire measurement chain, robust and reproducible algorithms

⋆ Willingness to capture the expertise of the clinician
→ Clinical annotations and metadata

Laurent Oudre Data processing and e-health 2023-2024 18 / 222



General introduction Usecase of the tutorials

Protocol

▶ Sequence of activities:
▶ stand for 6 s,
▶ walk 10 m at preferred walking speed on a level surface to a previously shown

turn point,
▶ turn around (without previous specification of a turning side),
▶ walk back to the starting point,
▶ stand for 2 s.

▶ Subjects walked at their comfortable speed with their shoes and without
walking aid.
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General introduction Usecase of the tutorials

Sensors

▶ IMU (Inertial Measurement Unit) record
linear accelerations (3D), angular velocities
(3D) and magnetic fields (3D) on each foot

▶ Sensor frame consists of 3-axis (X ,Y ,Z)
▶ For the tutorial: angular velocity

around axis Y
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General introduction Usecase of the tutorials

Database

221 recordings:
▶ Healthy subjects had no known medical impairment (labelled as ”T” for

Témoin).
▶ The orthopedic group is composed of 3 cohorts of distinct pathologies: lower

limb osteoarthrosis (ArtH, ArtG), cruciate ligament injury (LCA), knee injury
(Genou)

▶ The neurological group is composed of 2 cohorts: cerebellar disorder (CER) and
radiation induced leukoencephalopathy (LER)
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General introduction Usecase of the tutorials

The raw signals

Sujet sain Pathologie neurologique
peu sévère

Pathologie neurologique 
sévère
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General introduction Scientific questions and outline of the course
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General introduction Scientific questions and outline of the course

Main scientific questions

Sujet sain Pathologie neurologique
peu sévère

Pathologie neurologique 
sévère

Non-stationary signals
→ How can be detect the different regimes (stop, walking, U-turn…)?

Presence of repetitive patterns: the steps
→ What are they? How could we automatically extract them?

Robust feature extraction
→ How could be extract relevant features for longitudinal follow-up and
inter-individual comparison?
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General introduction Scientific questions and outline of the course

Scientific questions

▶ How can we construct a good instrumented protocol ? How to choose the
sensors ? How to consolidate the data ?

▶ How to extract relevant features from the data ? How to make sure that those
are robust and well-computed ?

▶ Are there some meaningful events that we could extract from the data and
could be used for quantitative analysis ?
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General introduction Scientific questions and outline of the course

Outline of the course: first part

2. Basic signal processing tools
2.1 Sampling theory
2.2 Discrete Fourier Transform
2.3 Digital filters
2.4 Stationarity, ergodicity and autocorrelation function
2.5 Spectrogram
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General introduction Scientific questions and outline of the course

Outline of the course: second part

3. Pre-processings
3.1 Denoising
3.2 Detrending
3.3 Interpolation of missing samples
3.4 Outlier removal
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General introduction Scientific questions and outline of the course

Outline of the course: third part

4. Event detection
4.1 Pattern extration and detection

Pattern detection
Pattern extraction

4.2 Change-point detection
4.3 Anomaly detection
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Basic signal processing tools
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Basic signal processing tools

Two visions: physics vs. statistics

▶ The notion of time have been used and modeled in physics since 18th century
and before (eg. Fourier transform).
First vision : a time series x[1 : N ] is the result of the digitization of a physical
phenomenon x(t). Physical properties of this phenomenon can be retrieved
and analyzed through the study of x[1 : N ] (and vice/versa).

▶ Randomness can also play a part to model a wider class of signals.
Second vision : a time series x[1 : N ] is a realization of a stochastic process
X [1 : N ]. Statistical properties of this phenomenon can be retrieved and
analyzed through the study of x[1 : N ] (and vice/versa).

In most cases, both approaches can be combined.
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Basic signal processing tools

Some useful signal processing tools

In the following, we will review basic signal processing tools and apply them to our
signals:
▶ Sampling theory
▶ Discrete Fourier Transform (DFT)
▶ Digital filters
▶ Notion of stationarity, ergodicity and autocorrelation function
▶ Spectrogram
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Basic signal processing tools Sampling theory
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Basic signal processing tools Sampling theory

What are we recording ?

▶ Often, we want to capture a physical phenomenon by using a sensor
▶ Sound from a microphone
▶ Temperature from a thermometer
▶ Linear acceleration with an embedded inertial measurement unit…

▶ These sensors allows to record what happen in the real world and to transform
this into understandable information that we can process on our computers
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Basic signal processing tools Sampling theory

Continuous and discrete signals

There exist two types of signals:
▶ Continuous : the value is known for each time value t

x(t) with t ∈ R

t : time (often given in seconds)
Ex : waves, electrical signal, light, sound…

▶ Discrete : the value is only known for a limited set of time values t[n]

x[n] with n ∈ Z

n : sample (no standard unity)
Ex : rainfalls recorded each hour, number of people in ICU each day …
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Basic signal processing tools Sampling theory

Continuous and discrete signals

In practice

▶ The continuous signals x(t) cannot be stored on a computer since they contain an
infinite number of values! Those can be seen as mathematical functions and are used to
construct theoritical models.

▶ The discrete signals x[n] can be stored on a computer (provided that there is a limited
number N of samples). A discrete signal can be seen as a table of N cells, where each
cell is a sample value x[n]. Most of the time, we also store a timestamp table that
contains all time values t[n] at which the signal has been recorded

Remark : All the signal you will process in tutorials are necessarily discrete signals discrets.
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Basic signal processing tools Sampling theory

Examples
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Basic signal processing tools Sampling theory

Sampling theory

▶ When we use a sensor for a protocol, the sensor will perform a task, called
sampling, that aims at converting the physical phenomenon of interest
(continuous signal) into a quantified discrete signal that can be stored on the
computer

▶ This sampling step can be performed on a regular temporal grid (e.g. record a
value each second) or irregular (e.g. record a value each time a button is
pressed)

▶ Careful ! When the sampling is irregular, it is waaaaaay more complicated to
process the data.

▶ Most of the time, we use a regular sampling, which is referred to as uniform
sampling
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Basic signal processing tools Sampling theory

Uniform sampling

▶ Principle : Convert a continuous signal x(t) into a discrete signal x[n] by only
storing what happens at certain timestamps t[n]

x[n] = x(t[n])

▶ For uniform sampling, we record a value each Ts seconds, where Ts is fixed:

t[n] = nTs =
n
Fs

▶ Ts is called the sampling period (in seconds)

▶ Fs =
1
Ts

is called the sampling frequency (in Hertz)
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Basic signal processing tools Sampling theory

Important

▶ The sampling frequency Fs corresponds to the number of samples that we will
be recorded in one second

▶ It is a crucial parameter when designing a protocol or a study, and a very
important feature to take into account when choosing the sensor

▶ As will be seen, the sampling frequency will impact all the processing steps
that will be applied to the signal
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Basic signal processing tools Sampling theory

Uniform sampling

▶ When sampling a signal with a sampling frequency Fs , we store the following
quantities :

Sample Timestamp Signal value
n t[n] x[n]
0 0 x(0)
1 Ts x(Ts)
2 2Ts x(2Ts)
3 3Ts x(3Ts)
...

...
...

▶ The total number of samples will be N = d × Fs where d is the duration (in
seconds) of the signal and Fs the sampling frequency
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Basic signal processing tools Sampling theory

Example
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▶ Continuous signal x(t) defined for t ∈ [0, 1[
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Basic signal processing tools Sampling theory

Example
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x̃(t) ▶ We take a value each 0.1 seconds by starting

at t = 0 and stopping at t = 0.9 :

▶ Ts = 0.1 seconds
▶ Fs = 10 Hz

▶ Timestamps t[n] defined as

t[n] = nTs =
n

Fs
for n ∈ J0, 9K

t[0] = 0, t[1] = 0.1, t[2] = 0.2, · · ·
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Basic signal processing tools Sampling theory

Example
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▶ Each signal value
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is stored in a table containing N = 10
samples

▶ x[n] = x(t[n]) with n ∈ J0, 9K
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Basic signal processing tools Sampling theory

Sampling theorem

▶ Intuitively, the choice of the sampling frequency depends on the speed of the
signal variations
E.g : the temperature in the room will not change each second, so maybe
taking a sampling period of a few minutes is enough

▶ How can we choose the best sampling frequency ?
▶ Compromise

▶ Large enough to take account the variations that are useful for the study
▶ As small as possible to keep the memory storage limited
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Basic signal processing tools Sampling theory

Shannon-Nyquist sampling theorem

Shannon-Nyquist sampling theorem (unformal form)
If fmax is the maximum frequency present in the phenomenon of interest, you
should have Fs > 2fmax

▶ Conversely, if you have recorded a signal with sampling frequency Fs , you will
only be able to study its frequency content for |f | < Fs

2 (very very important
property !)

▶ The frequency Fs
2 is often called the Nyquist frequency : larger observable

frequency in a discrete signal sampled at Fs Hz
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Basic signal processing tools Sampling theory

Examples

▶ An (young healthy) human ear can hear frequencies up to 20kHz, so if you can
to record HD sound, you should select Fs > 40kHz

▶ The maximum frequency of the acceleration produced by the human body is
around 20Hz, so if you plan to use an accelerometer to record human
movement, you should select Fs > 40Hz

▶ For eye movements it depends if you want to have access to the global gaze
movements or to very rapid eye movements such as saccades, etc…
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Basic signal processing tools Discrete Fourier Transform
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Basic signal processing tools Discrete Fourier Transform

Sampling and Fourier analysis

▶ Most tools for signal processing are derived from Fourier analysis
▶ In this context, we assume that x corresponds to the discrete measurement of

a continuous signal x(t)
▶ We consider uniform sampling period Ts and sampling frequency Fs = 1

Ts

x[n] = x(nTs)
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Basic signal processing tools Discrete Fourier Transform

Discrete Fourier Transform (DFT)

X [k] =
N−1∑
n=0

x[n] e−j2π kn
N pour 0 ≤ k ≤ N − 1

where N is the number of samples
▶ The space between two observable frequencies is called frequency resolution

∆f =
Fs
N

▶ X [k] corresponds to the DFT for the physical frequency

f [k] = k
Fs
N

for 0 ≤ k ≤ N − 1
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Basic signal processing tools Discrete Fourier Transform

Discrete Fourier Transform (DFT)
▶ Remark : the Discrete Fourier Transform (DFT) is N−periodic:

X [k + N] =

N−1∑
n=0

x[n] e−j2π (k+N)n
N

=

N−1∑
n=0

x[n] e−j2π kn
N −j2πn

= X [k]

▶ In particular, the frequencies f [k] = k Fs
N with k > N

2 do not verify the Shannon-Nyquist theorem
(Remember : if you have recorded a signal with sampling frequency Fs , you will only be able to
study its frequency content for |f | < Fs

2 )…

▶ In reality, they correspond to the frequencies f [k − N] = k Fs
N − Fs which are actually comprised

between − Fs
2 et 0

▶ When you compute the DFT with the standard FFT (Fast Fourier Transform) algorithm, for N even,
you will therefore observe the frequencies

0,
Fs
N
, 2

Fs
N
, . . . ,

Fs
2
,−

Fs
2

+
Fs
N
, . . .−

Fs
N

▶ This can be a bit confusing, and most packages (Matlab or Python) have functions that allows to

shift the frequencies back to the right order
[
− Fs

2 ,
Fs
2

]
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Basic signal processing tools Discrete Fourier Transform

Use of the FFT algorithm
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Basic signal processing tools Discrete Fourier Transform

Frequency resolution

▶ The DFT only allows to have access to N frequencies :

f [k] = k
Fs
N

for 0 ≤ k ≤ N − 1

▶ Actually, if the original signal is real, only the positive frequencies have a
physical meaning, so most of the time there is only N

2 useful frequency bins

▶ The frequency resolution ∆f = Fs
N is therefore crucial. If we note d the original

signal durations in seconds, and by recalling the fact that N = d × Fs , we have
that

∆f =
1
d

▶ The longer the observation time, the better the frequency resolution.
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Basic signal processing tools Discrete Fourier Transform

Spectral analysis

▶ X [k] is a complex quantity: most of the time, we use the squared absolute
values |X [k]|2 instead

▶ The analysis of the quantity |X [k]|2 can allow to discover interesting properties
of the time series

▶ |X [k]|2 with low frequencies f [k] correspond to phenomena with smooth
variations

▶ |X [k]|2 with large frequencies f [k] correspond to phenomena with fast
variations

▶ One very useful plot consists in plotting |X [k]|2 as a function of f [k]: such plot
is often referred to as spectrum (hence spectral analysis)
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Basic signal processing tools Discrete Fourier Transform

Example
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▶ Two signals sampled at 60 Hz : we therefore observe the frequency band
[−30, 30]

▶ Only positive frequencies are relevant : the first signal has frequencies up to
10Hz and the second up to 20Hz

▶ The second signal is likely to contain faster variations than the first
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Basic signal processing tools Discrete Fourier Transform

Example
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Basic signal processing tools Discrete Fourier Transform

Example
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Basic signal processing tools Discrete Fourier Transform

DFT features

▶ |X [k]|2 coefficients can be useful features
▶ In most cases, we can merge them on a frequency band of interest [f1, f2], with

0 ≤ f1 < f2 ≤ Fs
2

▶ The computed quantity is called relative energy, and is often renormalized by
the total energy of the signal

E[f1,f2] =

∑
k,f [k]∈[f1,f2]

|X [k]|2

∑
k,f [k]∈[0, Fs2 ]

|X [k]|2
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Example: EEG

Electroencephalography (EEG):
▶ Measures the electrical activity of

the brain with a sensor network
▶ Used to study several neurological

diseases (epilepsy, stroke…) and
sleep

▶ Each sleep phase corresponds to the
emergence of typical frequencies in
the brain
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Practical example: EEG

Each sleep phase corresponds to the
emergence of typical frequencies in the
brain:
▶ Delta waves: deep sleep without

dreams
▶ Theta waves: deep relaxation
▶ Alpha waves: light relaxation
▶ Beta waves : awake, active

information processing

Spectral features allow to figure out in
which sleep phase a subject is
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From spectral analysis to digital filters

▶ As seen previously, the spectral analysis allows to see what hides behind a
signal

▶ But the frequency domain can also be useful to modify the signal in order to
hightlight or remove certain phenomena

▶ This task is called filtering : we will transform a signal x[n] into a signal y[n]
with different properties

▶ In this lecture, we will only consider linear filtering
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Linear digital filters

x[n] Filter y[n]

a0y[n] =
q∑

i=0

bix[n− i]−
p∑

j=1

ajy[n− j]

▶ The linear digital filtering operation computes the filtered sample y[n] as a
linear combination of previous input values x[n− i] and output values y[n− j]

▶ The choice of the aj and bi coefficients and of the orders p and q will impact
the type of treatment that the filter will perform

▶ Most of the time, the conception of the filters is performed in the frequency
domain with some standard patterns

Laurent Oudre Data processing and e-health 2023-2024 62 / 222



Basic signal processing tools Digital filters

Filter bandwidth

▶ When conceiving a filter, we first consider the quantity H(f ) which is the
frequency representation of the filter effects. This quantity is called a transfer
function

▶ Frequencies for which |H(f )|2 is large will be kept (or amplified) in the filtered
signal

▶ Frequencies for which |H(f )|2 is low will be suppressed (or attenuated) in the
filtered signal

▶ The interval of frequencies that are kept by the filter is called the bandwidth
of the filter B = [fmin, fmax ] with fmin ≥ 0 and fmax ≥ 0
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Filter design: ideal filters

▶ To simplify the filter design, we often consider ideal filters whose transfer
function is simply

H(f ) =

{
1 if |f | ∈ B

0 otherwise

▶ There are four main types of behaviors : low-pass, high-pass, band-pass and
band-reject

▶ Each of these ideal filters are somehow perfect : some frequencies are
conserved and kept untouched, while others are completely removed

▶ In practice, when we will conceive the actual digital filters (i.e. the aj , bi
coefficients and the orders p and q), we will only get some approximation of
this ideal behavior

Laurent Oudre Data processing and e-health 2023-2024 64 / 222



Basic signal processing tools Digital filters

Low-pass filter

f

|H(f)|²

0 fc

Cut-off frequency : fc

All frequencies out of the band [−fc, fc] will be removed

Bandwidth B = [0, fc]
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High-pass filter

f

|H(f)|²

0 fc

Cut-off frequency : fc

All frequencies in the band [−fc, fc] will be removed

Bandwidth B = [fc,+∞[
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Band-pass filter

f

|H(f)|²

0 fc1 fc2

Cut-off frequencies : fc1, fc2

All frequencies out of the band [−fc2,−fc1] ∪ [fc1, fc2] will be removed

Bandwidth B = [fc1, fc2]
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Band-reject filter

f

|H(f)|²

0 fc1 fc2

Cut-off frequencies : fc1, fc2

All frequencies in the band [−fc2,−fc1] ∪ [fc1, fc2] will be removed

Bandwidth B = [0, fc1] ∪ [fc2 +∞[
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Example
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We consider a signal sampled at 100Hz and we will see the effects of the ideal filters
on it
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Example 1 : Band-pass
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Band-pass filter
Bandwidth B ≈ [28, 34] Hz
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Example 1 : Band-pass
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When we look at the spectrum of the filter output, we can see that all frequencies
outside the bandwidth have been attenuated
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Example 1 : Band-pass
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The signal seems more structured: low frequencies and high frequencies have been
removed
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Example 2 : Low-pass
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Low-pass filter
Bandwidth B ≈ [0, 7] Hz
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Example 2 : Low-pass
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When we look at the spectrum of the filter output, we can see that all frequencies
outside the bandwidth have been attenuated
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Example 2 : Low-pass
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The signal is slightly smoothed: high frequencies have been removed
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Example 3 : High-pass
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High-pass filter
Bandwidth B ≈ [40, 50] Hz
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Example 3 : High-pass
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When we look at the spectrum of the filter output, we can see that all frequencies
outside the bandwidth have been attenuated
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Example 3 : High-pass
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Only fast variations of the signal have been kept: the low frequencies have been
removed
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How and when to use a filter

▶ Low-pass: Smooth the signal; denoise a signal
▶ High-pass: Highlight punctual events, discontinuities, impulses; remove

continuous components or trends.
▶ Band-pass: Recover a signal emitted in a given frequency band (e.g. alpha

waves in EEG); denoise a signal whose bandwidth is known.
▶ Band-reject: Remove a component from a mixed signal (e.g. 50Hz or 60Hz

A.C.); perform source separation.
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From ideal filters to digital filters

▶ Most of the filters used in practice are digital filters of the form

a0y[n] =
q∑

i=0

bix[n− i]−
p∑

j=1

ajy[n− j]

▶ These filters will not achieve the perfect performances of the ideal filters, but
only approximation. But the output can be computed with only a few
elementary operations

▶ Two popular solution :
▶ Moving average filters (only for low-pass)
▶ Butterworth filters (which are approximations of the analog filter)
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Moving average filters

▶ Equivalent to low-pass filter
▶ One parameter: the length of the filter L

y[n] =
1
L

L−1∑
k=0

x[n− k]

▶ Low-pass filter with cut-off frequency

fc ≈
0.442947 × Fs√

L2 − 1
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Butterworth filters

▶ Two parameters: the order p = q and the cut-off frequency
▶ Can also be used for high-pass, band-pass, etc.
▶ The larger the order, the closer to the ideal filter: most of the time the order is

kept quite small (except when e.g. the bandwidth is very tight)
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Butterworth filters
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Statistical vision

Would it make sense to compute the empirical
mean of these time series ?

▶ Some properties of the signals are
also linked to the distributions of
values (and their evolution with
time)

▶ In order to take that into account,
we will now focus on the statistical
properties of the signal
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Statistical vision

▶ In order to better understand the properties of a signal, deterministic analysis
such as Fourier has been extended to probabilistic and statistical analysis

▶ In this context, we assume that x[1 : N ] corresponds to a realization of a
stochastic process X [1 : N ]

▶ Each X [n] can be seen as a random variable, with a (possibly unknown)
probability distribution

▶ Statistical properties of X [1 : n] can be retrieved from estimates based on
x[1 : n]
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Two fundamental properties: stationarity

▶ Stationarity : The statistical properties of the time series do not change over
time
▶ Order 1

∀n, E [X [n]] = µ

▶ Order 2
∀n1, n2, E [X [n1]X [n2]] = γX [|n2 − n1|]

▶ Order 1 + Order 2 → wide-sense stationarity (most common assumption)
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Two fundamental properties: ergodicity

▶ Ergodicity : Statistical properties can be retrieved from temporal properties.
Assuming that the time series is wide-sense stationary:
▶ Order 1

∀n, E [X [n]] = µ = lim
N→∞

1
N

N∑
n=1

x[n]

▶ Order 2

∀n1, n2, E [X [n]X [n+ k]] = γX [k] = lim
N→∞

1
N

N∑
n=1

x[n]x[n+ k]
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Stationarity vs. non-stationarity
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▶ None of these signals are stationary: any
statistical features computed on the whole
time series will be wrong

▶ In order to prevent this to happen, two
solutions exist
▶ Divide the signals into small frames where

the signal is assumed to be stationary and
ergodic

▶ Use a change-point detection algorithm to
detect these changes and work separately
on each segment (see later)
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Autocorrelation

Assuming that X [1 : n] is ergodic and wide-sense stationary, we can estimate from
x[1 : n] the autocorrelation function
▶ Autocorrelation function

γ̂biased
x [m] =

1
N

N−1∑
n=0

x[n]x[n+ m] where x[n] = 0 for n ̸= 0 . . .N − 1

▶ This function helps (among other things) to discover the presence of periodic
components within a signal
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How to use the autocorrelation function
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Original signal, sampling frequency 100 Hz
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How to use the autocorrelation function

Lag (m)
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Autocorrelation function, peaks are visible for lags multiple of 50
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How to use the autocorrelation function
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A periodic signal with period 50 × 1
100 = 0.5 sec was hiding!
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Statistical features
Assuming that X [1 : n] is ergodic and wide-sense stationary, we can estimate
several statistical properties from x[1 : n]
▶ Mean

µ̂ =
1
N

N∑
n=1

x[n]

▶ Autocorrelation function

γ̂biased
x [m] =

1
N

N−1∑
n=0

x[n]x[n+ m] where x[n] = 0 for n ̸= 0 . . .N − 1

γ̂unbiased
x [m] =

1
N − |m|

N−1∑
n=0

x[n]x[n+ m] where x[n] = 0 for n ̸= 0 . . .N − 1
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Features from autocorrelation function

▶ Given a lag m, one useful feature is the renormalized autocorrelation
coefficient

γ′
X [m] =

γX [m]

γX [0]

that quantifies the correlation between two samples spaced by m in the time
series

▶ These features are very useful when the signal has a seasonality or periodic
component: in this case, we store γ′

X [m0] where m0 corresponds to the index of
the first peak of the autocorrelation function (m0 > 0)
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Other statistics
▶ Other quantities can be estimated such as minimum and maximum values, or robust

statistics such as median or percentiles (5%, 25%, etc.)
▶ Most of the time, these purely statistical features remove the time information…
▶ If necessary, those quantities can be extracted on sliding windows, increasing the

number of features while preserving the time information
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Spectrogram

▶ When the properties of the time series tend to change with time
(non-stationary signals), it is more careful to compute the DFT on sliding
windows

▶ By sliding the window along the signal, we recover a time-frequency
representation called spectrogram

▶ Matrix representation: each column corresponds to the DFT on the window of
interest.

X-axis: frame number, Y-axis: frequency bin
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Example
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Original signal, Fs = 1000 Hz
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Example
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Window length Nw = 256
Computation of the DFT on the first frame and storage in the spectrogram matrix…
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Example

Time (s)

0 1 2 3 4 5 6 7 8
-4

-3

-2

-1

0

1

2

3

4

Time (s)

1 2 3 4 5 6 7

F
re

q
u
e
n
c
y
 (

H
z
)

0

50

100

150

200

250

300

350

400

450

500

Window length Nw = 256
Computation of the DFT on the second frame and storage in the spectrogram

matrix…
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Example
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Window length Nw = 256
Same process…
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Example
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Window length Nw = 256
Final result
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DFT vs. Spectrogram

▶ Only use DFT when you are sure that there is no abrupt changes in the time
series

▶ Note that using DFT will tend to average the frequency content on the whole
time series, which can be tricky in some application contexts

▶ For safety, always first visualize the spectrogram to make sure that no
significant changes occur
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DFT vs. Spectrogram
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DFT vs. Spectrogram
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DFT suggests a sinusoidal phenomenon around frequency 100 Hz
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DFT vs. Spectrogram

Time (s)

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
F

re
q
u
e
n
c
y
 (

H
z
)

0

50

100

150

200

250

300

350

400

450

500

In fact, chirp signal between 100 and 500 Hz ‼

Laurent Oudre Data processing and e-health 2023-2024 107 / 222



Basic signal processing tools Spectrogram

Hyperparameters for spectrogram
x[n]

𝑁𝑤 − 𝑁0

𝑁𝑤

Fenêtre d’analyse

▶ Nw : window length (in samples)
Often taken as a power of 2 (for FFT) and linked to the desired frequency resolution.

▶ No : overlap between two successive frames (in samples)
Often taken as 50% or 75% of the window length and characterizes the time resolution (optimal
when No = Nw − 1)

▶ w : analysis window (Hann, Hamming, Blackman…)
Traditionally, in order to limit side effects, the signal frame is multiplied by an analysis window
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Pre-processings

The need for preprocessing

▶ Typical usecase: noisy time series with outliers and missing values
▶ In order to apply algorithms and to extract meaningful events, the data

scientist needs to clean and consolidate the data
▶ Time-consuming and tedious task: fortunately, there are many tools that can

be used
▶ Careful! All these preprocessing have a strong impact on the expected results

and on the future learned rules!
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Pre-processings

Introductory example

ECG signal during general anesthesia
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Pre-processings

Introductory example

Presence of measurement noise → Denoising

Laurent Oudre Data processing and e-health 2023-2024 112 / 222



Pre-processings

Introductory example

Presence of a trend → Detrending
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Pre-processings

Introductory example

Data loss causing missing samples → Interpolation
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Pre-processings

Introductory example

Presence of outliers → Outlier removal and suppression of impulsive noise
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Pre-processings

Introductory example

Break in stationarity → Change-point detection
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Pre-processings

Introductory example
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When all preprocessings have been performed, it becomes possible to retrieve the
heartbeats and thus to perform ML
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Pre-processings Denoising

Additive white Gaussian noise (AWGN) model

The most common model for noisy signals is

y[n] = x[n] + b[n]

▶ x[n] is the clean (unknown) signal
▶ b[n] is the measurement noise, assumed to be additive, white and Gaussian

(AWGN)
▶ y[n] is the measured signal
▶ x[n] and b[n] are uncorrelated

Denoising

Given a noisy signal y[n] corrupted by AWGN, retrieve the clean
signal x[n]
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Pre-processings Denoising

Notion of AWGN

An AWGN b[n] is:
▶ Additive: the noise therefore corrupts all the samples
▶ White: stationary process with zero-mean and all samples are pairwise

uncorrelated

γb[m] =

{
σ2 m = 0
0 otherwise

▶ Gaussian: all samples are i.i.d. according to

b[n] ∼ N (0, σ2)
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Pre-processings Denoising

Example
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Electricity consumption data

How can we remove the noise component?
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Pre-processings Denoising

Filtering

▶ The main solution consists in using results from signal processing and statistics
▶ Knowing that γx [m] = E [x[n]x[n+m]] and using the fact that x[n] and b[n]

are uncorrelated, we get that

γy [m] = γx [m] + γb[m]

▶ By computing the DFT of this equation, we have

|Y [k]|2 = |X [k]|2 + Nσ2

▶ Adding AGWN is equivalent to adding a constant on the DFT of the signal (in
linear scale)
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Pre-processings Denoising

Example
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In the frequency band where only AGWN is present (here with σ2 = 0.01), the log-spectrum
is equal to

10 log10

(
|Y [k]|2

N

)
= 10 log10

(
|X [k]|2

N
+ σ2

)
= 10 log10(0.01) = −20dB
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Pre-processings Denoising

Example
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By plotting the log-spectrum of the noisy signal and knowing the noise variance σ2,
one can guess that all frequencies greater that e.g. 0.001 Hz are likely to only

contain noise.
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Pre-processings Denoising

Filter design

▶ By observing the log-spectrum of the noisy signal and using either prior
knowledge on the original signal bandwidth or on the noise level, we can
determine the type of filter and associated cut-off frequencies that can be used
for denoising

▶ From that, it is only digital filter design (see previous slides on moving average
and Butterworth filters).
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Pre-processings Denoising

Example
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Denoised signal with low-pass filtering
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Denoised signal with low-pass filtering

Low-pass filtering (Butterworth filter of order 4) with fc = 0.001 Hz
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Pre-processings Denoising

Other approaches

Other approaches for denoising include
▶ Sparse dictionary techniques, where the signal is approximated with

parametric or learned function, thus removing the noise component
▶ Decomposition techniques, as noise may be considered independent of the

signal component (EMD, SSA, ICA…)
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Pre-processings Detrending

Trend+Seasonality model

The trend+seasonality model writes as

x[n] = α1β1 (nTs) + . . .+ αjβj (nTs)︸ ︷︷ ︸
x trend [n]

+αj+1βj+1 (nTs) + . . .+ αdβd (nTs)︸ ︷︷ ︸
xseasonality [n]

+b[n]

▶ Seasonality: pseudo-periodic component
▶ Trend: smooth variations, systematic increase or decrease in the data

Detrending

Given a signal x[n], estimate and remove the trend component x trend [n]
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Pre-processings Detrending

Standard models

The most common trend models are:
▶ Constant trend

x trend [n] = α0

▶ Linear trend
x trend [n] = α1 (nTs) + α0

▶ Polynomial trend

x trend [n] =
K∑

k=0

αk (nTs)
k
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Pre-processings Detrending

Least-square regression

▶ Least-square estimator: minimization of

∥x− βα∥2

where

β =


β0(0) · · · βK (0)
β0(Ts) · · · βK (Ts)

...
. . .

...
β0((N − 1)Ts) · · · βK ((N − 1)Ts)


▶ Closed form solution

α̂ =
(
βTβ

)−1
βTx

▶ Estimation of the trend

xtrend = βα̂
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Pre-processings Detrending

Example
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Pre-processings Detrending

Example
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Pre-processings Detrending

Example
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Pre-processings Detrending

Other approaches

Other approaches for detrending include
▶ Filtering techniques, as trends often correspond to low frequencies or

smooth components (low-pass/bandpass filters, Fourier or wavelets
thresholding…)

▶ Decomposition techniques, as trends may be considered independent of the
seasonality and/or the noise component (EMD, SSA, ICA…)
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Pre-processings Interpolation of missing samples
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Pre-processings Interpolation of missing samples

Interpolation of missing samples
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Electricity consumption data

Interpolation of missing samples

Given a signal x and a set of missing samples T , estimate the missing
samples x̂T
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Pre-processings Interpolation of missing samples

Interpolation of missing samples

▶ Missing data are very frequent :
▶ Sensor malfunctions
▶ Clipping effect
▶ Corrupted samples

▶ Missing data can take several forms
▶ Isolated samples: easy to handle
▶ Contiguous samples (up to 100): necessitates a full reconstruction

▶ Interpolation includes prediction and inpainting [Lepot et al., 2017]
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Pre-processings Interpolation of missing samples

Polynomial interpolation

Given a time series x that we want to interpolate on the integer set T = Jnstart , nendK, the
easiest interpolation strategy consists in using polynomial models for the reconstruction

▶ Constant value

∀n ∈ T , x̂[n] =
x[nstart − 1] + x[nend + 1]

2

▶ Linear interpolation

∀n ∈ T , x̂[n] = β1n+ β0

where β0, β1 are determined with the values x[nstart − 1] and x[nend + 1]

▶ Cubic spline interpolation [McKinley et al., 1998]

∀n ∈ T , x̂[n] = β3n3 + β2n2 + β1n+ β0

where βk are determined by solving a system of equations based on x[nstart − 2], x[nstart − 1],
x[nend + 1] and x[nend + 2]
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Pre-processings Interpolation of missing samples

Example
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Pre-processings Interpolation of missing samples

Pros and cons

▶ Easy to implement and good results for small segments
▶ In particular, when only a few missing samples: constant values is often the

best
▶ When the degree of the polynomial increases, instabilities may occur (strong

dependency with the neighborhood samples)
▶ When used extensively, may lead to a smoothing of the signal hence a change

in the spectrum (boosting of the low frequencies)
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Pre-processings Interpolation of missing samples

Model-based interpolation

▶ For long segments of missing samples, interpolation becomes a full
reconstruction task

▶ In this case a model is necessary to obtain a satisfactory interpolation
1. Choice of an adequate model
2. Parameter inference from the known samples
3. Replacement of the missing samples by values in adequacy with the learned model
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Pre-processings Interpolation of missing samples

Model-based interpolation

▶ Problem: how do we estimate the parameters from a time series with missing
data?

▶ Iterative solution
1. Initialization of the missing samples with simple rough estimates (set to zero,

constant or linear interpolation…)
2. Parameter inference from all samples
3. Reconstruction of the missing samples from the learned model
4. Repeat steps 2 and 3 until convergence
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Pre-processings Interpolation of missing samples

Autoregressive model AR(p)

x[n] = −
p∑

i=1

aix[n− i] + b[n]

▶ p : order of the model
▶ a1, . . . , ap : AR coefficients
▶ b[n] : white noise (often called innovation)
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Pre-processings Interpolation of missing samples

Examples
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Pre-processings Interpolation of missing samples

Parameter estimation

▶ In order to estimate the parameters, we can go back to the main equation

x[n] + a1x[n− 1] + . . .+ apx[n− p] = b[n]

▶ By multiplying by x[n− 1] we obtain

x[n]x[n− 1] + a1x[n− 1]2 + . . .+ apx[n− p]x[n− 1] = b[n]x[n− 1]

▶ By taking the expected value

E [x[n]x[n− 1]] + a1E
[
x[n− 1]2

]
+ . . .+ apE [x[n− p]x[n− 1]] = E [b[n]x[n− 1]]

▶ Since b[n] and x[n− 1] are uncorrelated and b[n] is a white noise

E [b[n]x[n− 1]] = E [b[n]]E [x[n− 1]] = 0

▶ If x[n] is wide-sense stationary, we have

E [x[n1]x[n2]] = γx [|n1 − n2|]
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Pre-processings Interpolation of missing samples

Parameter estimation
▶ The equation becomes

γx [1] + a1γx [0] + . . .+ apγx [p− 1] = 0

▶ The same principle can be applied by multiplying the main equation by
x[n− 2], x[n− 3], . . ., leading to the following system of equations called
Yule-Walker equations:


γx [0] γx [1] · · · γx [p− 1]
γx [1] γx [0] · · · γx [p− 2]

...
...

. . .
...

γx [p− 1] γx [p− 2] · · · γx [0]




a1

a2
...
ap

 = −


γx [1]
γx [2]

...
γx [p]


▶ Knowing the autocorrelation function γx [m] for m = 0 . . . p is sufficient to

estimate the parameters
▶ Most of the times, we use an empirical estimator of the autocorrelation

function instead
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Pre-processings Interpolation of missing samples

AR-based interpolation

▶ For an AR(p) model, given estimates of parameters â, the signal can be
reconstructed by assuming that

x[n] ≈ −
p∑

i=1

âix[n− i]

▶ The prediction error on the whole time series writes

E(x) =
N−1∑
n=p

∣∣∣∣∣x[n] +
p∑

i=1

âix[n− i]

∣∣∣∣∣
2

▶ The main idea is to minimize this quantity in order to retrieve appropriate
values for the missing samples [Janssen et al., 1986]
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Pre-processings Interpolation of missing samples

AR-based interpolation

x∗ = argmin
∀n/∈T ,x̃[n]=x[n]

E(x̃)

▶ This optimization problem has a closed form solution (least-square estimates) that is
obtained by rewritting E(x) as the sum of terms depending on the missing samples
n ∈ T and other depending only on the known samples.

▶ By denoting xT the set of missing samples, the equation rewrites

E(x) = xT TBxT + 2xT d+ C

where

▶ ∀(t, t′) ∈ T , bt,t′ =


p−|t−t′|∑

l=0

âl âl+|t−t′| if 0 ≤ |t − t′| ≤ p

0 else
▶ ∀(t, t′) ∈ T , dt =

∑
−p≤k≤p
t−k/∈T

b|k|x[t − k]

▶ C is a constant only depending on the known samples
▶ The final problem is simply a linear system and thus easy to solve

BxT = −d
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Pre-processings Interpolation of missing samples

Example
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Pre-processings Outlier removal

Outlier removal

Time (s)

70.14 70.16 70.18 70.2 70.22 70.24 70.26 70.28 70.3 70.32
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

Time (s)

8.3 8.35 8.4 8.45 8.5 8.55 8.6 8.65
-1

-0.5

0

0.5

1

1.5

2

Outliers, also called impulsive noise (as opposed to AWGN) correspond to spurious
samples (isolated or continuous) that take unlikely values
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Pre-processings Outlier removal

Outlier removal

Outlier removal

Given a signal x[n], outlier removal consists in detecting the locations
T of the outliers (detection phase) and to replace these values with

more adequate values (interpolation phase)

▶ Interpolation phase can be done by using the previously described algorithms.
We will therefore focus on the detection phase.

▶ Two settings: isolated samples or contiguous group of samples
▶ Outliers are not only characterized by their values but also on their positions

in the time series: context is fundamental
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Pre-processings Outlier removal

Isolated samples
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Pre-processings Outlier removal

Histogram
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If the values taken by the impulsive noise are particularly large with respect to the
signal, they can be detected by looking at the histogram of the values taken by the

samples: similar to outlier detection in statistical data
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Pre-processings Outlier removal

Median filtering

▶ Outliers can be detected AND removed by using a sliding median filtering that
replaces each value by the median of the samples in a window of length 2w+ 1:

x̂[n] = median−w≤i≤+w {x[n− i]}

▶ Median filtering allows to smooth the time series while preserving the
discontinuities

▶ Example : original signal [0.3 0.4 0.45] and noisy signal [0.3 0.9 0.45]
▶ Moving average filter: 0.9 → 0.55
▶ Median filter: 0.9 → 0.375
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Median filtering
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Pre-processings Outlier removal

Contiguous samples
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Impulsive noise that corrupts groups of contiguous samples
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Pre-processings Outlier removal

Contiguous samples

▶ When the impulsive noise corrupts groups of contiguous samples, studying the
values is not sufficient

▶ In order to retrieve the set of outliers T , using a model may be necessary
▶ Outliers: samples that are far from their predicted values according to a model
▶ Same principle that model-based interpolation: parameter estimation,

detection, interpolation and reiterate
▶ Note: this task is close to the Anomaly Detection task (see later)
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Pre-processings Outlier removal

AR-based outlier detection

x[n] = −
p∑

i=1

aix[n− i] + b[n]

▶ Given estimates of the AR parameters â, the prediction error writes:

e[n] = x[n] +
p∑

i=1

âix[n− i]

▶ If adapted model, good parameter estimation and low noise variance, this
quantity must be rather small for samples that are not outliers [Oudre, 2015]

▶ Detection method with threshold λ :

T = {n s.t. |e[n]| > λ}
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Pre-processings Outlier removal

AR-based outlier detection
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Detection with AR(10) model

Laurent Oudre Data processing and e-health 2023-2024 161 / 222



Pre-processings Outlier removal

AR-based outlier detection and removal

In order to perform both detection and removal of impulsive noise, alternance
between

1. Estimation step: learn the AR parameters from the current time series

2. Detection step: detect the set of outliers

3. Interpolation step: replace these outliers by appropriate values

4. Reiterate steps 1, 2, 3
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Pre-processings Outlier removal

Example
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Iteration 1: Detection with AR(10) model
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Pre-processings Outlier removal

Example
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Iteration 1: Interpolation with AR(10) model
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Pre-processings Outlier removal

Example
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Iteration 2: Detection with AR(10) model
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Pre-processings Outlier removal

Example
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Iteration 2: Interpolation with AR(10) model
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Event detection

Contents

1. General introduction

2. Basic signal processing tools

3. Pre-processings

4. Event detection
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4.2 Change-point detection
4.3 Anomaly detection
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Event detection

Discovering events in time series

▶ Time series are widely used for monitoring
▶ When recorded for hours, days, weeks… data is likely to be redundant
▶ Three fundamental questions:

▶ Are there some recurrent behaviors in my data ?
▶ Were there significant changes in my data across time?
▶ Was there something new or unusual in my data?

▶ Ill-posed problems: what is a recurrent behavior? what is a significant change?
What is new or unusual?
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Event detection Pattern extration and detection
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Event detection Pattern extration and detection

Motivation
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Event detection Pattern extration and detection

Motivation
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Event detection Pattern extration and detection

Problem 1: Pattern Detection

Input time series

Dictionary of patterns
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Event detection Pattern extration and detection

Problem 1: Pattern Detection

Annotated time series

Dictionary of patterns
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Event detection Pattern extration and detection

Problem 1: Pattern Detection

Pattern Detection

Given a dictionary of patterns, retrieve these patterns in an input
time series

▶ The patterns/the time series can be multivariate
▶ The patterns may have different lengths
▶ The patterns can be annotated, i.e. be linked to a specific phenomenon of

interest: in this context, pattern recognition will provide an automated
annotation of the input time series

Laurent Oudre Data processing and e-health 2023-2024 174 / 222



Event detection Pattern extration and detection

Problem 2: Pattern Extraction

Input time series

Extracted patterns
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Event detection Pattern extration and detection

Problem 2: Pattern Extraction

Pattern Extraction

Given an input time series (or a set of time series), learn a dictionary
of patterns

▶ A pattern is a shape that appears repetitively in the time series (but kinda
blurry notion)

▶ All patterns are supposed to have the same length (for sake of simplicity)
▶ The extracted patterns can be used to characterize the time series, or studied

individually

Laurent Oudre Data processing and e-health 2023-2024 176 / 222



Event detection Pattern extration and detection

Pattern detection

▶ In order to find a known pattern p of
length Np in a time series x of length N ,
we need to compute all distances

d[n] = d(p, x[n : n+ Np − 1])

for 1 ≤ n ≤ N − Nd + 1 and where
x[n : n+ Nd − 1] is the sequence of x
starting at n and of length Np

▶ Intuitively, this is a costly operation
since the distance needs to be
computed approximately N times

Can we compute this quantity with good
complexity?
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Event detection Pattern extration and detection

Euclidean distance

dEUC(x, y) =

√√√√ N∑
n=1

(x[n]− y[n])2

▶ Sensitive to time shifts, amplitude
changes, offsets and
dilatation/contraction

▶ Necessity to have a perfect match
between the timelines

▶ Sensitive to outliers but
approximately OK with low AWGN
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Event detection Pattern extration and detection

Normalized Euclidean distance

In order to improve the robustness to changes in amplitude/offset, several authors
recommand to use a normalized Euclidean distance :

dnEUC(x, y) =

√√√√ N∑
n=1

(x̃[n]− ỹ[n])2

where

x̃[n] =
x[n]− µx

σx
z-score normalization

▶ Still sensitive to time shifts, dilatation/contraction, outliers and timelines
▶ Normalization may increase the sensitivity with respect to additive noise
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Event detection Pattern extration and detection

Fast computation for Euclidean distance

d[n] = d(p, x[n : n+ Np − 1])

▶ The sequence d[n] is referred to in the literature as the distance profile
▶ A solution has been found for standard and normalized Euclidean distance.

The whole computation is in O(N logN) and does not depend on the pattern
length Np [Mueen et al., 2015]

▶ This solution is based on the properties of FFT (Fast Fourier Transform) that is
a fundamental algorithm for computing the Discrete Fourier Transform of a
time series in O(N logN)
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Event detection Pattern extration and detection

Results with normalized Euclidean distance
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Occurrences of the pattern can easily be retrieved in the signal by searching for
peaks with small distance values
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Event detection Pattern extration and detection

Pattern extraction

▶ We have seen methods to search for patterns in a time series: these methods
need a predefined dictionary of templates

▶ In practice, one can be interested in the reverse question: how can I detect and
extract patterns from a time series ?

▶ Unsupervised task: no prior knowledge except for the average duration of the
researched patterns L

▶ What is a pattern ? Difficult question : repetitive shapes, notion of
periodicity, etc.
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Event detection Pattern extration and detection

Distance-based pattern extraction

▶ Intuitively, we can re-use results from the previous part to automatically detect
patterns

▶ A pattern is a subsequence that is likely to be found several times in the whole
time series

▶ By computing a sliding distance between this subsequence and all
subsequences in the time series, it should appear clearly that one (or several)
others subsequences are very close

▶ Solution: use a brute-force algorithm to efficiently compute all distances?
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Event detection Pattern extration and detection

Example
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Here, we computed the distance profile of the sequence displayed in red: it is clear
that this sequence appears 3 times in the time series. It might be a pattern!
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Event detection Pattern extration and detection

Example
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Here, we computed the distance profile of the sequence displayed in red: no
obvious structure in the distance profile (except for the exact correspondence):

unlikely to be a pattern!
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Event detection Pattern extration and detection

Matrix profile

▶ In fact, patterns are detectable by only looking at the minimal distance with all
subsequences

▶ Beware of trivial matches ! Only compare with subsequences that do not
overlap with the subsequence of interest

▶ Matrix profile [Yeh et al., 2016] : given a pattern length L, compute

m[n] = min
i>n+L or i<n−L

d(x[n : n+ L− 1], x[i : i + L− 1])

▶ Small matrix profiles values indicate that the subsequence has been found
elsewhere in the time series, suggesting that it could be a pattern

▶ Efficient computation with techniques already mentioned (fast sliding distance
computation)
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Event detection Pattern extration and detection

Example

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

In
p

u
t 

s
ig

n
a

l

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

M
a

tr
ix

 p
ro

fi
le

In red : subsequence with minimal matrix profile value. In green : closest
subsequence (according to the normalized Euclidean distance)

Laurent Oudre Data processing and e-health 2023-2024 187 / 222



Event detection Change-point detection

Contents

4. Event detection
4.1 Pattern extration and detection
4.2 Change-point detection
4.3 Anomaly detection
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Event detection Change-point detection

Problem 3: Change-Point Detection

Change-Point Detection

Given a time series x, retrieve the times (t1, . . . , tK ) where a
significant change occurs

▶ Necessitates to estimate both the change-points but also the number of
changes K

▶ Highly depends on the meaning given to change
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Event detection Change-point detection

Problem statement

Time (s)
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▶ When the changes are abrupt or
when the estimation of the
change-points is relevant in the
context, we can use change-point
detection methods

▶ Let assume that signal x[n]
undergoes abrupt changes at times

T ∗ = (t∗1 , . . . , t
∗
K∗)

▶ Goal: retrieve the number of
change-points K∗ and their times
T ∗

▶ One assumption: offline
segmentation (but can easily be
adapted to online setting) [Truong et
al., 2020]
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Event detection Change-point detection

Problem statement

(
t̂1, . . . , t̂K

)
= argmin

(t1,...,tK )

K∑
k=0

c(x[tk : tk+1])

𝑦𝑡0..𝑡1 𝑦𝑡1..𝑡2 𝑦𝑡2..𝑡3 𝑦𝑡3..𝑡4

Cost function c(.)

▶ Measures the homogeneity of the
segments

▶ Choosing c(.) conditions the type of
change-points that we want to detect

▶ Often based on a probabilistic model for
the data

Problem solving

▶ Optimal resolution with dynamic
programming

▶ Approximate resolution (sliding
windows…)

Original Signal

Discrepancy Curve

Peak Detection
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Event detection Change-point detection

Change in mean

The most popular is indubitably the L2 norm [Page, 1955]

cL2(x[a : b]) =
b∑

n=a+1

∥x[n]− µa:b∥2
2

where µa:b is the empirical mean of the segment x[a : b].
▶ Particular case of cML with Gaussian model with fixed variance
▶ Allows to detect changes in mean
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Event detection Change-point detection

Example
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Event detection Change-point detection

Example: Change-Point Detection with cL2

K = 7
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Event detection Change-point detection

Example: Change-Point Detection with cL2

K = 12
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Event detection Change-point detection

Change in slope and intercept

Change in slope and intercept can be handled in the general context of piecewise
linear regression

clinear(x[a : b]) = min
α

b∑
n=a+1

∥∥∥∥∥x[n]−
M∑
i=1

αiβi[n]

∥∥∥∥∥
2

2

▶ Functions β1[n], . . . , βM[n] are covariate functions and we seek for changes in
the regression parameters

▶ Allows to detect changes in trend, seasonality, etc… [Bai et al., 1998]
▶ For slope and intercept, we choose β1[n] = 1 and β2[n] = n
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Event detection Change-point detection

Example: Change-Point Detection with clinear

K = 7
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Event detection Change-point detection

Example: Change-Point Detection with clinear

K = 12
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Event detection Change-point detection

Search method

(
t̂1, . . . , t̂K

)
= argmin

(t1,...,tK )

K∑
k=0

c(x[tk : tk+1])

Convention : t0 = 0, tK+1 = N

▶ Several methods can be used to solve this problem with a fixed K
▶ Optimal resolution with dynamic programming: find the true solution of the

problem (but costly)
▶ Approximated resolution with windows: test for one unique change-point on a

window
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Event detection Change-point detection

Finding the number of change points

▶ In all previously described algorithms, the number of change-point K was
supposed to be known

▶ In practice, this parameter is difficult to set: as such, the total cost V(T , x) will
always decrease when K increases…

▶ Three solutions
▶ Use heuristics by testing several values of K
▶ Use a penalized formulation of the CPD problem to seek for a compromise

between reconstruction error and complexity
▶ Use supervised approaches from annotated signals
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Event detection Change-point detection

Heuristics for finding the number of change-points

▶ One easy solution is to test a set of change-points number K from 1 to Kmax

and to compute the sum of costs V(T , x)
▶ The optimal number of change-points can be estimated by searching for an

elbow on the curve of V(T , x) as a function of K
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Event detection Anomaly detection
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Event detection Anomaly detection

Problem 4: Anomaly Detection

Anomaly Detection

Given a time series x, retrieve the set of samples T that corresponds
to unusual phenomenon

▶ May include isolated or contiguous samples (see previous slides on outlier
detection/removal)

▶ Highly depends on the meaning given to usual/unusual
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Event detection Anomaly detection

Introductory example

Easy: an anomaly is a too small or too large value (outlier)
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Event detection Anomaly detection

Introductory example

More complex: some small/large values are anomalies
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Event detection Anomaly detection

Introductory example

Anomalies depend in the previous values
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Event detection Anomaly detection

Introductory example

Anomalies correspond to unusual events
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Event detection Anomaly detection

Anomaly Detection

Anomalies can take various forms and have different meanings [Chandola et al.,
2009]:
▶ Outliers, i.e. isolated samples with exceptionally large/low values
▶ Bursts of outliers, i.e. segments that do not coincide with what is observed

usually in the time series (in terms of values)
▶ Unusual events that breaks the regularity within the time series
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Event detection Anomaly detection

Outlier detection

Simple anomalies (isolated samples or contiguous samples) can be detected with
techniques already described
▶ Statistical methods:

▶ Global: Histogram visualization to detect aberrant values
▶ Adaptive: Threshold-based methods on sliding windows (mean/standard deviation

or median)
▶ Model-based methods:

▶ Residual and prediction error (trend+seasonality, sinusoidal or AR model)
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Event detection Anomaly detection

Example
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Event detection Anomaly detection

Example: Histogram

One outlier can be considered as an anomaly
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Event detection Anomaly detection

Example: Histogram

Only one detected anomaly
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Event detection Anomaly detection

Adaptive statistical methods
▶ The main idea is to use sliding window and to perform a statistical test for

outlier detection
▶ Contrary to histogram, these methods allow to take into account the local

context but careful, time information is lost! Only the distribution of values is
used for detection.

▶ Multitude tests can be used but the most common are
▶ Mu/sigma [Roberts, 2000]:

|x[n]− µn| > λσn

where µn and σn are respectively the local mean/standard deviation around
sample n and λ a threshold.
Under i.i.d. Gaussian assumption, λ = 1 → 68%, λ = 2 → 95%, λ = 3 → 99.7%

▶ Median/median absolute deviation [Leys et al., 2013]:

|x[n]−medn | > λmadn

where medn and madn are respectively the local median/median absolute
deviation around sample n and λ a threshold.
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Event detection Anomaly detection

Example: Mu-Sigma

Mu-Sigma, λ = 1.5, window length of 12 samples
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Event detection Anomaly detection

Example: Med-Mad

Med-Mad, λ = 1.5, window length of 12 samples
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Event detection Anomaly detection

Model-based anomaly detection

▶ Idea: use a time series model to detect anomaly [Yamanishi et al., 2002; Hill et
al., 2010]

▶ Advantage: truly takes into account the temporal aspects
▶ Three steps:

1. Choose an adequate model and learn the parameters
2. Compute the prediction/signal reconstruction
3. Anomalies are samples that diverge from the model
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Event detection Anomaly detection

Example: AR model

AR model with p = 12
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Event detection Anomaly detection

Example: AR model

Anomaly also changes the prediction of the next p samples
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Event detection Anomaly detection

Distance-based methods

▶ Some anomalies may be more complex to detect as they are not characterized
by aberrant values but by a new behavior that was not previously seen in the
time series

▶ In this case, anomalies can only be defined as a divergence from a normal
behavior

▶ This task is the dual of the task already seen for Pattern Detection/Extraction,
and the same techniques can therefore be used

▶ Instead of searching for repetitive patterns, we are searching for non-repetitive
events!
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Event detection Anomaly detection

Unsupervised anomaly detection

▶ Reminder : Matrix profile [Yeh et al., 2016] : given a pattern length L, compute

m[n] = min
i>n+L or i<n−L

d(x[n : n+ L− 1], x[i : i + L− 1])

▶ Small matrix profiles values indicate that the subsequence has been found
elsewhere in the time series, suggesting that it could be a pattern

▶ Efficient computation with normalized Euclidean distance

What about large values in the matrix profile?
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Event detection Anomaly detection

Example: matrix profile

Matrix profile with window of length L = 12 months
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Event detection Anomaly detection

Matrix profile

▶ By examining large values on the matrix profile, anomalies can be detected
▶ Subsequences that are far from all subsequences in the signal: likely to

correspond to new behaviors
▶ Advantages: no need for a parametric model
▶ Necessitates to have a rough idea of the scale of the anomaly (parameter L)
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