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Abstract

Accurate estimation of activation times is crucial in
electrophysiological studies to assess depolarization wave
propagation direction. Rule-based methods, such as the
Steepest Deflection (SD) method, have been prevalent, but
their lack of robustness is a major limitation, leading to
exploring alternative methodologies. The Directional Ac-
tivation Algorithm (DDA) [1, 2] leverages delays between
electrogram (EGM) signals. We generalize the DAA frame-
work by utilizing cross-correlation analysis to compute
pairwise relative delays between EGMs. Our Adaptive Di-
rection Activation Algorithm (ADAA) integrates morpho-
logical characteristics and initial activation time estimates
to enhance accuracy and robustness. Our contribution lies
in the introduction of a more robust and general model that
can be fitted with the same computational cost as DAA. We
formulate the optimization problem and derive a closed-
form solution. Through evaluation on both toy model data
and realistic simulations, we demonstrated the superior ef-
ficacy of our methodology in estimating activation times
compared to existing methods. In specific settings, our ap-
proach reduces the mean squared error (MSE) by 50%.

1. Introduction

Cardiac arrhythmias such as fibrillation and tachycar-
dia (atrial or ventricular) are common cardiac arrhythmias
which are associated with a high overall risk of mortal-
ity. In some cases it is necessary to perform an inter-
ventional procedure, during which intracardiac EGMs are
recorded. In the literature, researchers often investigate the
mechanisms underlying the pathology and use the electro-
cardiograms to provide insights into the propagation pat-
terns of depolarization wave-fronts in the heart, poten-
tially detecting pathological substrates related to arrhyth-
mias. A central point to understanding cardiac activation

dynamics is the accurate determination of local activation
times (LATs), marking the moment when depolarization
reaches specific electrodes. While conventional LATs esti-
mation methods are rule-based, they are not robust to some
noise and interference, especially when dealing with bipo-
lar electrograms. To address these limitations, researchers
have explored alternative techniques, including wavelets
decomposition [3] or cross-correlation analysis [1]. More
details and other methods can be found in the Cantwell et
al. survey [4].
In this work, we focus on the application of cross-
correlation for LAT estimation, aiming to refine existing
methodologies like the ones proposed in [1] or [5]. The
initial method (DAA) described in [1] focused only on ad-
jacent electrodes to compute the cross correlation, then de-
riving the absolute activation times from the delays. Then,
by conceptualizing the electrode array as a graph, Kölling
et al. [5] generalized this method considering electrode
pairs with varying distances, expanding the scope of anal-
ysis. While these methods show great results compared to
standard rule-based methods, two limitations can be iden-
tified. First, the activation times remain relative since the
smaller activation time is set to 0, and this can be an is-
sue when merging several outputs of the method as we
lose the chronology between the two sets of electrograms.
Secondly, cross-correlation-based delays estimation can be
difficult when dealing with signals with varied morphol-
ogy, leading to misleading results. This issue is often met
when dealing with pathological tissues because of the pres-
ence of highly fragmented signals.

Contributions: In this paper, we propose to generalize the
DAA method to address the limitations of getting a relative
activation time and being sensible to the signal morphol-
ogy variability. We propose a hybrid method based on the
same methodology than the one in [1] and [5], but leverag-
ing a first estimation of the LAT (using rule-based method



for example) and weighing the optimization problem based
on the signals similarities (cf Figure 1). We validate our
method through evaluation on both synthetic and simulated
data, and we assess the efficacy of our approach compared
to the rule-based methods, and to the global methods in-
troduced in [1] and [5].

2. Methods

2.1. Preliminaries

Given N electrograms X1[1 : T ], ..., XN [1 : T ]
recorded at several locations and their respective activa-
tion times τ = [τ1, ..., τN ] ∈ {1, ..., T}N , the objective is
to retrieve τ from the signals.
In [1], the authors introduce a global method based on
cross-correlation allowing to compute the activation times
from a multivariate perspective.
Let x, y : Z → R be two time series with a finite support.
The cross-correlation Cx,y : Z → R between x and y is
defined by:

Cx,y[i] =

∑
k

x[k]y[k − i](∑
k

x[k]2
)(∑

k

y[k]2
) , i ∈ Z (1)

The delay between x and y is then defined as:

δx,y = argmax
i

|Cx,y[i]| (2)

Given pairwise delays (δi,j)1≤i<j≤N between X1, ..., XN ,
the method in [1] computes the activation times τ̂ minimiz-
ing the errors with the delays in the least square sense:

min
τ̂1,...,τ̂N

∑
1≤i<j≤N

(τ̂i − τ̂j − δi,j)
2 (3)

Such an optimization problem corresponds to a linear
problem under Gaussian assumption:

δ1,2
δ1,3

...
δi,j

...

 =


τ̂2 − τ̂1
τ̂3 − τ̂1

...
τ̂j − τ̂i

...

+


ε1,2
ε1,3

...
εi,j

...


where ϵi,j ∼ N (0, 1) for all 1 ≤ i < j ≤ N .
In vector form we can write the problem as:

d = BT τ̂ + ε (4)

where

BT =



−1 1 0 0 . . . 0 . . . 0
−1 0 1 0 . . . 0 . . . 0

...
...

...
...

...
...

0 −1 1 0 . . . 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . −1 . . . 1


.

The solution τ̂ satisfies

BBTτ̂ = Bd.

In [5], the authors propose to add or remove some rows
and columns in the matrix BT selecting neighbors from 1
hop to p hops away in the graph. They concluded that the
higher p the better the results.

2.2. Method formulation

While in [5] the authors propose to leverage a binary
graph incidence matrix to take into account more or less
number of hops in the optimization problem, we introduce
here a generalized model dealing with a weighted graph.
Let G = (V, E) an undirected graph with vertices V =
{1, ..., N} and E = {((i, j), wi,j)}1≤i<j≤N the weighted
edges. We propose to solve the following generalized
problem:

min
τ̂1,...,τ̂N

∑
1≤i<j≤N

wi,j (τ̂i − τ̂j − δi,j)
2
, (5)

where w = [wi,j ]1≤i<j≤N are positive weights encod-
ing the activation patterns similarities. They are given by

wi,j = Tl

(
max

k
|CXi,Xj

[k]|
)

, where Tl is the threshold-

ing application defined by Tl(x) =

{
0 if x < l
x otherwise .

Note that there is no additional computation since it is al-
ready done to compute the pairwise delays. Thus this gen-
eralized version has the same computational cost as the
DAA.
Let W = diag ([w1,1, ..., w1,N , w2,3, ..., wN−1,N ]), in
vector form the problem becomes:

min
τ̂1,...,τ̂N

∣∣∣∣BTτ̂ − d
∣∣∣∣2
W

, (6)

where
∣∣∣∣BTτ̂ − d

∣∣∣∣2
W

denotes
(
BTτ̂ − d

)T
W

(
BTτ̂ − d

)
.

Then, to address the issue of obtaining absolute activa-
tion times, and be able to solve the problem with a dis-
connected graph, we propose to leverage a first estimation
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Figure 1. Illustration of the proposed framework compared to the DAA method.

of the activation times by assuming that this estimator fol-
lows a normal distribution centered in the true activation
time: τ̃ ∼ N (τ, σ2Id). In practice, we can for example
use a rule-based method (cf [4] for a survey of the existing
methods).
Finally, the problems becomes:

min
τ̂1,...,τ̂N

∣∣∣∣BTτ̂ − d
∣∣∣∣2
W

+ λ||τ̂ − τ̃ ||22, (7)

with λ = 1
2σ2 is an hyper-parameter. Note that the larger

λ, the higher the confidence in the first estimation.
This optimization problem has a closed-form solution and
it is given by:

τ̂ =
(
BWBT + λId

)−1
(BWd+ λτ̃) . (8)

3. Results

In this section, we present the results achieved with a
toy model dataset and simulated data are presented. We
compare ADAA, DAA (version in [5]) and a rule-based
method (max dV

dt ).

Toy dataset.
The aim of our method is to generalize the ones in [1, 5]
so as to deal with signals with several morphology. To
illustrate this idea, we created synthetic datasets using 4
patterns (one healthy and three with fractionation). We
construct the N signals by choosing randomly one of the
four patterns, applying a temporal shift and adding some
Gaussian noise. The first LAT estimations τ̃ were taken
as a uniform random variable in [[τ − 10, τ + 10]] where

τ is the true LAT. We tested several settings by taking
N ∈ {10, 30, 50} and checking the methods with datasets
built using a range from 1 pattern to 4 patterns to under-
stand whether our method is able to compute LATs with a
high morphology variability. To compare the two methods
we used the Mean Squared Error (MSE) defined by:

MSE(τ̂ , τ) =
1

N

N∑
i=1

(τ̂i − τi)
2. (9)

We ran experiments 50 times for each settings. The re-
sults are presented in Figure 2 (a) and (b) and we observe
that when more than 3 different patterns are present in
the EGMs, Adaptive DAA outperforms DAA, dividing the
MSE by 3 for 3 patterns and by 2 for 4 patterns. More-
over, the results show that while adding more EGMs does
not change the results obtained by DAA (MSE is around
3.5 from 10 to 50 EGMs), the Adaptive DAA appears to
perform better as the dimension increases (from 2.5 with
10 EGMs to 1.5 for 50 EGMs).

Simulated Electrograms
In this section, we run experiments with simulated elec-
trograms. To simulate data, we followed the model pro-
posed in [6], which is used in several works (including
[5,7]). The tissue is discretized on a two-dimensional grid,
and the electrical propagation from cell to cell is governed
by a reaction-diffusion equation. We then simulate the
electrode recording by computing the convolution over the
space of the transmembrane currents, making sure the re-
sulting EGMs were coherent after visual inspection. Sim-
ulated data were generated by adding line blocks and slow-
ing area and we compare our method with DAA and a rule-
based method (max dV/dt). Note that here τ̃ is taken as
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Figure 2. a) MSE plotting against the number of EGMs considered. Experiments were run on data built using the 4
patterns. b) MSE plotting against the number of patterns used to create the data. We considered 30 EGMs for each
experiment. c) Results obtained with the simulated data.

the LAT computed by the rule-based method.
The results are featured in Figure 2 and show better results
with Adaptive DAA. The MSE is halved compared to DAA
or the rule-based method and the global propagation pat-
tern resulting of Adaptive DAA seems to be more realistic
than the others.

4. Conclusion

We presented a generalized version of DAA [1], called
Adaptive DAA, which relies on an additional weighted
regularization approach depending on the correlation be-
tween signals with the same computational cost as the orig-
nal method (DAA). We derived the closed form of the
solution and conducted experiments with synthetic data
showing better quantitative results than DAA or rule-based
methods. Tests conducted with real data hold significant
interest and are envisioned for exploration in subsequent
works.
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