Localization of arrhythmogenic sites in post-ischemic ventricular
tachycardia using Network Granger Causality.
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Abstract— Detecting abnormal electrical wave propagation
in Sinus Rhythm (SR) in patient with Ventricular Tachycardia
(VT) can enhance treatment strategies. However, traditional
methods, like activation maps, often produce biased results due
to the difficulty of calculating what is called Local Activation
Time (LAT). This paper introduces a method based on Network
Granger Causality (NGC) to assess VT mechanics. Instead of
computing LATs, NGC generalizes the binary Granger causal-
ity framework and allows to leverage the EGM morphologies,
identifying temporal causality links within a network of electro-
grams. Furthermore, by incorporating geometrical information
in the NGC model, we improved the interpretation of causal
relationships and applied our method to localize anomalies via
the reconstruction error computation. Using simulated clinical
data, we compare our method to standard techniques, such
as voltage and velocity computation. Our results show that
NGC-based analysis improves VT anomaly detection during
SR over standard methods in terms of ROCAUC, increasing
performance from 0.80-0.85 to 0.89. Finally, we present an
example on a real patient with VT.

I. INTRODUCTION

Cardiac arrhythmias, such as fibrillation and tachycardia
(atrial or ventricular), are common and associated with a
high risk of mortality. Although drugs may be sufficient
to eliminate the pathology, in some cases it is necessary
to perform a surgical procedure, during which intracardiac
electrocardiograms are recorded. In the literature, researchers
often investigate the use of these electrocardiograms to
understand the propagation patterns of depolarization
wavefronts in the heart, potentially detecting pathological
substrates related to arrhythmias. The most common method
to understand cardiac activation dynamics relies on the
accurate determination of the Local Activation Times
(LATs) from recorded intracardiac electrograms (EGMs)
which mark the moment when depolarization reaches
specific electrodes. However the computation of these
LATs is a non-trivial task and existing methods can return
very different results (see e.g. [1]). Moreover, most of
these methods rely on univariate signal analysis, treating
each electrogram independently. This can be suboptimal
since our objective is to capture a global phenomenon that
can be observed through the links between electrograms.
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More recently, some works have proposed methods to
detect temporal causality relationships between intracardiac
activity signals [2], [3], [4]. For example, in [2], a Granger
causality-based method was proposed to localize the sites,
called drivers, that can cause a ventricular fibrillation.
However, this method consider pairwise causality tests,
which have been shown to have important limitations
[5]. Another limitation of this method is its sensitivity to
neighborhood selection, as causality tests are conducted
only among signals within predefined spatial neighborhoods.

Contributions: To address these limitations, this work inves-
tigates the use of the Network Granger Causality (NGC), a
generalization of the Granger causality, to capture anomalies
in the wave propagation when the patient is in sinus rhythm
(i.e not under Ventricular Tachycardia (VT)). More specifi-
cally, we first introduce a NGC-based algorithm enabling the
capture of electrical wave dynamics from recorded EGMs
and distances between electrodes. This method allows to
infer causality links between nearby EGMs, without man-
ually selecting a neighborhood, and to reconstruct the inputs
signals as linear combinations of the others with some delays.
Then, we use the EGMs reconstruction error to automatically
detect anomalies in the propagation, potentially leading to
the identification of the sites responsible of the tachycardia.
Finally, we show the efficiency of our methodology through
simulated data and we present an example on a real patient.

II. METHOD
A. Preliminaries

In order to define the NGC, we first recall the concept of
Granger causality between two signals [6]. Let x and y be
two 1D signals such that at time t =1,2,...:
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where g[t] ~ .A(0, c?) for 6 >0, d > 1 is the order of
the model, and {a,f;}¢ , are parameters. We say that x
Granger-causes y if one of the {;}, is non zero. In practice,
as {04, B;}%_, are unknown, we estimate them by minimizing
the least square error between the observed signal y and
its reconstruction using x and Model (1). To generalize
the Granger causality to multiple 1D signals, the NGC



framework was built on the following VAR(d) model:

d
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where X[-] = (Xi[-],...,X,[]]) is a p-dimensional signal, d

is the order of the VAR, {C"}¢_, are matrices in RP*”
encoding causality links between the different dimensions of
the signal at each time # =0, 1,...,T, and &[t] ~ .4 (0,021,)
is some noise where ¢ > 0 and /,, the identity matrix of size
p X p.

As for Model (1), in practice, given N samples X ")[1] € R?
with n=1,...,N and t =0,...d, one possibility to estimate
the parameters {C® ‘71:1 is to maximize the likelihood of
Model (2). This leads to the following least square problem:
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where ||-||F is the Frobenius norm and X[t] € RPN is the
matrix storing all the {X"}¥_in column. As shown in [7],
this minimisation can be divided into p independent sub-
problems, which are easier to handle, and we can add some
penalization term to improve the parameters inference. For
j=1,...,p, these sub-problems are given by:
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with A > 0 a hyper parameter and &?(-) a penalization term.

B. Method formulation

The goal of our method is to compute causality links
between EGMs recorded by electrodes at several locations.
To this end, we rely on the NGC model (2) which allows to
(automatically) compute causality links between a set of p
electrodes (i.e. the matrices {C*}¢_,). Furthermore, since the
electrical wave propagation is governed by reaction diffusion
equations, we propose to leverage that the nearest the record-
ing electrodes, the most likely the causality link, by adding
to Model (2) this spatial information through the penalization
term. In detail, we first compute the pairwise distances
matrix between electrode positions and apply a Gaussian
kernel to obtain a matrix W = [K, (8(pi, p;))] 1<i.j<p» Where
0 is a distance, p; are the recording positions and K :
x + exp(—x?/p?). Note that the matrix W contains values
between O and 1, and the higher the value, the nearest the
electrode positions. Finally, we replace &(-) in (4) by the
following adaptive lasso penalty:
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This penalty encourages sparsity while incorporating geo-

metrical constraints through W [8]. In addition, following
the work in [9], we allow refinement of the prior matrix W

through iterations using an alternating minimization frame-
work (sequently updating C then W). This is done by solving
the following optimization problem:
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where A and v are hyper parameters and W is the initial com-
puted prior matrix. When W’ is fixed, Problem (6) reduces
to Problem (4) and can be easily solved using the package
cvxpy [10]. Furthermore, when C is fixed, the associated
problem can be solved as explained in [9]. The intuition
here is that W encodes our prior knowledge (the closest the
recording electrodes, the most likely the causality link), but
it could be noisy or erroneous and lead to biased results
due to an irrelevant penalization. Thus, refining the prior
matrix through iterations (taking into account information
learned at the previous iteration) leads to a more accurate
penalization in the optimization problem and results in a
better reconstruction of the true underlying causal links.

C. Anomaly detection with NGCE

Using the d matrices {C*}¢_, returned by Problem (6),
we can construct d causal graphs (one for each lag) that
give insights about the global propagation of the signals.
Furthermore, we can compute the reconstruction NGC Error
(NGCE) of the j-th EGM defined by:
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This error has already proved its efficiency to automatically
detect anomalies [11]. The intuition is that we are looking
for abnormal signals relative to its neighborhood, so the
unpredictability’ of a particular EGM given its neighbor
EGMs is a good indicator of anomaly. The full procedure
is summary in Algorithm 1.

Algorithm 1

Inputs: EGMs data Y € RP*T| electrode positions p;,
hyperparameters (A,7,p,d)
Output: Reconstruction errors Ey,...,E,

1: Compute distance matrix D using Euclidean distance
between each pair of electrode.

2: Compute prior matrix W <— exp(—D?/p?)

3: Transform Y into N successive overlapping segments of
size d: X=(Y[0:4d],Y[1:d+1],...,Y[T —d: T]).

4: Solve the optimization problem (6) following [9]

5: Compute the reconstruction errors NGCE},...,NGCE,




III. EXPERIMENTS

In this section, we use our method to localize pathological
areas in the ventricle, and more specifically isthmus and
areas of slow conduction from EGM signals. We compare
ourselves to voltage and velocity computation, which are
the two standard approaches to localize pathological tissues.
Indeed, in practice, low-voltage areas or low-velocity
are often targeted, as they are good indicators of the
presence of scars where the electricity cannot propagate
properly. However, note that the conduction velocity is not
trivial to estimate from EGMs, especially in pathological
ventricles. Actually, as discussed in [12], the conduction
velocity computation is a difficult problem and there are
several methods to estimate it. In our experiments, we
have computed the conduction velocity using the following
procedure: (1) estimation of the LAT by computing
argmaxdV /dt for each EGM, (2) interpolation on the full
surface using radial basis functions (Gaussian kernel), (3)
computation of the LAT gradient norm inverse to obtain
the velocity (see [12] for more details). Moreover, since
the LAT estimation depends a lot on the method used, we
have also compared our method to the velocity computation
using true LATSs (available for simulated data).

In summary, we compared four methods:

1) NGCE: the method presented in Section II.

2) V_estimated: Velocity computation using a standard
LAT estimator.

3) V_true: Velocity computation using the true LATS.

4) Voltage computation.

A. Synthetic data

— Simulation procedure. We perform a quantitative
analysis using simulated clinical EGM signals following
the approach proposed in [13]. This approach has also been
used in several research papers (see e.g. [14], [15]). First,
the ventricle tissue is modeled by a two-dimensional grid
of size 300 x 300 on which we generate random patterns
of scars and isthmus. Then, we simulate the electrical
wave propagation of a given action potential in the tissue
by solving the Eikonal equation. On top of this grid, we
add another grid of size 14 x 14 indicating the position of
196 electrodes. Finally, we compute a spatial convolution
of the potentials to simulate the electrode recordings. An
illustration of the simulated EGM signals is given in Figure
1 (bottom panel). For more details, we refer to [13].

To obtain a wide variety of conductivity scenarios, we
randomly generated 110 conduction velocity maps by
performing dilation, rotations and translations of 5 manually
built patterns of scars and slow conduction areas. An
example of one of these maps is shown in Figure 1 (top
left panel). Then, we simulated the EGMs as explained
above and we labeled as ’abnormal’ all the 300 x 300 grid
cells with a low (but non zero) conduction velocity. In
these experiments, we set p to the median of the pairwise
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Fig. 1. Example of simulated data used for experiments. Top left panel:
True velocity map with a dense scar area and an isthmus. Top right
panel: Associated activation map obtained solving the Eikonal equation
and electrodes positions (blue points). Bottom: Generated EGMs. Note that
only these EGMs are available and the two maps are not part of the input
data.

distance between the electrodes, 10 samples were used to
select the hyperparameters (d,A,7y) of our method and we
ran the experiments using the 100 other samples.

— Metrics. Recall that the task is to retrieve the slow
conduction areas on the tissue (i.e. on the 300 x 300 grid)
taking as inputs only the simulated EGMs and the sensors
locations. Since our method and the voltage computation
only return values for each electrode, we performed an
interpolation using the Nadaraya method [16] to obtain a
real value for each cell of the tissue. As we are interested in
evaluating whether the features (NGCE, velocity, voltage)
are relevant for separating healthy areas from abnormal
ones, we computed the ROCAUC [17]. This indicates the
capacity of the different methods to detect abnormal cells
and thus potential sites responsible of the tachycardia.

— Results. A visualization of the features NGCE, velocity,
and voltage returned by each method on the example of
Figure 1 is given in Figure 2. Furthermore, the values
of the ROCAUC metric obtained with the four methods
on the 100 samples are given in table I (the larger the
better). In addition, to highlight that our method can identify
abnormal areas regardless of the size of the scars, we have
divided them into two categories: small scars and large scars
(corresponding respectively to the smaller 25% and the other
ones). First, on the ROCAUC metric, our method NGCE



Velocity map (estimated LAT) Velocity map (true LAT)

Voltage map NGCE map

Fig. 2. Example of results obtained with simulated data. Note that this
example is obtained using the case presented in Figure 1.

outperforms the standard approaches achieving a score of
0.89 (against 0.8 and 0.85 for voltage and velocity) for all
type of scars. Remarkably, NGCE even returns better results
that the velocity computation using true LATs, while we are
interested to detect areas with slow velocity. Note also that,
as expected, all methods better identify large scars rather than
the small ones, but NGCE remains superior in both scenarios.
One explanation behind the high performance of our method
is the following: wave propagation anomalies often result
in local abnormal potentials in the signals, making them
difficult to be reconstructed using neighborhood signals,
which is exactly what is computed by NGCE.

Method/ROCAUC All Scars Small Scars | Large Scars

NGCE 0.89 + 0.13 | 0.84 £ 0.15 | 0.95 + 0.07

V_estimated 0.80 £ 0.20 | 0.73 £0.22 | 0.90 + 0.10

V_true 0.86 + 0.22 | 0.81 £0.24 | 091 + 0.16

Voltage 0.85 4+ 0.12 | 0.79 £ 0.12 | 0.93 + 0.08
TABLE I

ROCAUC SCORES WITH STANDARD DEVIATIONS FOR ALL SCARS,
SMALL SCARS, AND LARGE SCARS.

B. An example on a real patient

Finally, we tested our method on real data recorded during
an ablation procedure.

— Data Extraction. The procedure was performed on
a post-ischemic VT patient at the Saint-Joseph Clinique
(Marseille, France) using the EnsiteX mapping system.
Unipolar EGMs and electrode locations were acquired with
an HDGrid catheter of 16 electrodes during sinus rhythm
(at a sampling frequencies of 1000 Hz for the EGMs
and 100Hz for the positions). The goal of this ablation
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Fig. 3. Two segments recorded by the 16 electrodes of the HDGrid catheter.
In blue the true signals and in orange the reconstruction with our method.

procedure was to identify arrhythmogenic sites (i.e., isthmus
and slow conduction areas) and ablate them. In practice,
the physicians introduce a catheter equipped with electrodes
which they move around to record signals throughout the
ventricle. The 3D ventricle geometry and ablation tags
(blue points in Figure 4) were collected, serving as ground
truth for qualitative evaluation. All data were extracted in
compliance with the General Data Protection Regulation
(GDPR).

— Data Processing. Recall that the raw signals consisted
of continuous recordings of two time series per electrode
(16 electrodes in total): the unipolar signal and the 3D
location time series. We extracted all 2.5-second segments
where the catheter remained stable, resulting in a data set
of Ny =200 segments, each containing 16 unipolar signals
and corresponding electrode positions. Our method was
then applied to each segment, and the computed values
were projected onto the 3D ventricle geometry. Finally,
we performed Nadaraya interpolation to cover the entire
ventricle.

— Results. Figure 3 displays two examples of signals re-
constructed with our method when the segments are normal
(upper panel) or abnormal (lower panel). As expected, ab-
normal signals are less well reconstructed, which means that
their NGCEs are greater than those of normal signals. In
addition, we display in Figure 4 the values of the NGCE
(top panel) or voltage (bottom panel) projected on the 3D
ventricule. It should be noted that computing conduction
velocity is a very difficult task for real data, and the results
obtained were very poor. We therefore only present the
visualization of outputs for NGCE and voltage computation.
We can see on Figure 4 that, although the voltage maps
correlate well with the ablation sites (all tags, i.e. blue points,
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Fig. 4. Example of voltage and NGCE map on real data with ablation
set. The color range goes from red to purple: red indicates a normal area
while purple indicates the most abnormal sites. More precisely, purple areas
correspond to small voltage areas and large NGCEs.

lie in low-voltage areas indicated by the purple color), they
lack precision compared with the NGCE map. Notably, the
NGCE map shows the greatest overlap between the purple
regions (indicating high NGCE values) and the ablation
labels, highlighting its superior accuracy for this particular
patient.

IV. CONCLUSION

In this paper, we have introduced a methodology to auto-
matically detect arrhythmogenic sites in post-ischemic ven-
tricular tachycardia from electrograms (EGMs). Our method
is based on Network Granger Causality (NGC) and yields
promising results for understanding ventricular tachycardia
(VT) mechanisms during sinus rhythm. Indeed, by lever-
aging the activation morphologies and quantifying causal
dependencies among neighboring signals, our method offers
valuable insights into abnormal electrical wave propagation.
Validation using simulated clinical data demonstrates its
effectiveness in detecting anomalies and could thus improve
treatment strategy design. Overall, this approach could en-
hance patient care in the management of VT.
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