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ABSTRACT

In this work, we leverage recent graph uncertainty principles
to introduce a new dictionary learning method on graphs. Our
method considers two distinct classes of atoms, spatially local
atoms on the graph, and smooth atoms, together with well
suited penalty functions. Notably, the consideration of the
notion of localized atoms on graphs allows to model local and
interpretable phenomena.

Index Terms— Graph-signal, Dictionary-learning, Sig-
nal decomposition

1. INTRODUCTION

Dictionary learning is a key tool for estimating a linear rep-
resentation of data, i.e., learning a linear subspace defined by
a family of basis vectors — commonly referred to as atoms
— that form a dictionary. This representation has been suc-
cessfully used in a wide range of fields including, obviously,
dimensionality reduction [1], denoising [2], and image clas-
sification [3]. However, if linear learning methods are mainly
restricted to vector data, studying signals that live on topolog-
ically complicated domains — such as social networks [4],
cyber-physical systems [5] or even protein interaction net-
works [6] — requires the use of graph as a flexible data rep-
resentation tool, suitable for modeling the underlying struc-
ture of such signals. The study of interpretable factorization
models applicable to such structured data thus motivated the
development of graph-based dictionary learning models.

In this work, we address the issue of learning such dictio-
naries from graph signals by considering two distinct classes
of atoms: (i) spectrally smooth atoms — characterizing con-
tinuous phenomena of the underlying structure of the graph
— and (ii) spatially local atoms. Such decomposition meth-
ods are an efficient tool to isolate different phenomena whose
sum is only measured, e.g. true signal and noise, or to detect
abnormal signals on networks. As we will show in Section
4.2, taking into account local atoms is also of great interest
for the analysis of complex bio-mechanical time series, since
it allows to decompose signals into a combination of localized
and therefore more easily interpretable basic elements.

2. STATE OF THE ART

2.1. Graph Signal Processing

Let G = (V, E ,W) be a symmetric, weighted and undirected
graph composed of a set of N nodes V = {v1, v2, ..., vN}, a
set of edges E ⊂ V × V , as well as a weight matrix W ∈
RN×N

+ . The graph is moreover supposed to be connected.
Then, provided a signal x ∈ RN , it is possible to define a
signal on the graph G, as a mapping x : V −→ R from the set
of vertices to the set of real numbers.

We also introduce the Laplacian matrix of the graph G,
defined as L = D −W, with D the degree matrix of G and
W its weight matrix. The Laplacian matrix classically allows
to quantify the smoothness of a graph signal, defined as

SG(x) :=
∑

(i,j)∈E

wi,j(xi − xj)
2 = xTL x

In addition, two notions of signal localization can be intro-
duced: localization in the spatial domain — to what extent
signal intensities are concentrated around one or more nodes
called central nodes — and in the frequency domain — to
what extent active frequencies are concentrated. Given a cen-
tral node c ∈ V , and a graph distance between each pair of
nodes dG : |V| × |V| −→ R+, the local spread [7] of a signal
x around node c is defined as

∆2
loc(x, c) =

1

||x||22

N∑
j=1

dG(c, vj)
2 x2

j =
1

||x||22
xT Pc x,

with Pc = diag
(
dG(c, v1), . . . , d

G(c, vN )
)
. Similarly, the

spectral spread of a signal on a graph can be quantified as

∆2
sm(x) =

1

||x||22
xT L x

Given the notions of spatial and frequency uncertainty defined
above, the graph uncertainty metric introduced by Agaskar [7]
restricts the set of feasible pairs (∆2

loc(x, c),∆
2
sm(x)), which

implies that a signal cannot be arbitrarily localized simulta-
neously in the spatial and spectral domains. Formally, given
some α > 0, the following inequality applies to any non-zero
signal x ∈ RN

∆2
loc(x, c) + α∆2

sm(x) ≥ q(α)

with q(α) > 0 the smallest eigenvalue of the matrix Pc+αL.



2.2. Graph Dictionary Learning

Given a graph signal x, a dictionary-based decomposition of
x is a vector a ∈ RM , such that

x ≈
M∑

m=1

am d(m).

The dictionary D is thus defined as the set (d(1), . . . ,d(M))
of M vectors of RN — also called atoms — while the vector
a = (a1, . . . , aM ) is denoted as the activation vector of signal
x for the dictionary D. Given X = (x(1), . . . ,x(L)) a set of
L signals of RN×L, learning a dictionary of size M from the
signal X can be reduced to solving the following optimization
problem:

D∗, A∗ = argmin
D,A

||X−DA||2F + f(D) + g(A), (1)

where || · ||F denotes the Frobenius norm and f(D), g(A) are
penalty terms imposed to the learned dictionnary and activa-
tion matrix, respectively.

The optimization problem (1) is often — if not always —
non-convex, and the search for a local solution is performed
through an alternated minimization procedure, described as
follows:

• Activation update (AU) step: given a dictionary D at
step k − 1, learns the optimal activation matrix at step
k, such that A∗ = argmin

A
||X−DA||2F + g(A).

• Dictionary update (DU) step: given an activation ma-
trix A at step k, learns the optimal dictionary at step k,
such that D∗ = argmin

D
||X−DA||2F + f(D).

2.3. Penalties and Constraints

Several penalty terms g and f have been introduced in the
literature. We now briefly review the main ones.

2.3.1. AU Step Penalties

Sparsity is a desired property for activation vectors. However,
approaches that strictly impose an L0-norm are not convex,
making the problem NP-hard. A common solution [8] is to
replace the L0-norm by the L1-norm, which tends to produce
sparse solutions while simplifying the search for a solution.
The associated penalty function is defined as follows

g(L1) (A) = αp ||A||1,

with αp > 0 a penalty parameter.
A second approach, introduced by Ramamurthy [9], con-

sists in integrating an a priori knowledge of the graph struc-
ture when updating the activation matrix. Formally, it consists
in considering a second weighted graph Gx = (Vx, Ex,Wx)

in which each node carries a signal x(l) of the original set X
of signals, while the weights Wx

i,j provide a measure of sim-
ilarity between each pair of signals x(i) and x(j). The penalty
function — the so-called graph-penalized activation penalty
— associated with this approach is formulated as

g(G
x)(A) = αs

∑
(i,j)∈Ex

Wx
i,j ||a(i) − a(j)||22

= αsTr
(
ALxAT

)
,

with αs > 0 a penalty parameter and Lx the Laplacian matrix
associated to graph Gx.

2.3.2. DU Step Penalties

A first popular constraint that has been used in graph DL
is the smoothness penalty on the atoms rather than on the
signals themselves. Given a graph G, this constraint, intro-
duced by Yankelevsky [10] — denoted graph-smooth dictio-
nary penalty — is defined as follows

f (sm) (D) = βs

M∑
m=1

SG(d
(m)) = βs Tr

(
DT LD

)
, (2)

with βs > 0 a penalty parameter. The addition of this con-
straint to the optimization problem allows guiding the learn-
ing process toward atoms that are regular with regard to the
underlying graph structure.

An alternative approach is to consider atoms of a specific
family, imposing a particular structure on the dictionary and
learning the parameters of that structure. The structure in
question usually incorporates desirable properties of the dic-
tionary such as translation invariance or minimal consistency
[11]. In particular, let us mention the method introduced by
Thanou [12] which proposes to structure the learned dictio-
nary as a set of sub-dictionaries, each one being a polynomial
of the graph’s Laplacian matrix.

3. PROPOSED METHOD

We now present our variation of the dictionary learning prob-
lem motivated by the uncertainty principles discussed in Sec-
tion 2.1.

3.1. Problem Statement

Activation and dictionary update problems are introduced
separately in the two following sections.

3.1.1. AU Step

Similarly to Ramamurthy [9], our method uses the graph-
penalized activation penalty g(G

x), leading to the following



AU step

A∗ = argmin
A

||X−DA||2F + αs Tr
(
ALxAT

)
(3)

This penalty has been retained because it favors the dissimi-
larity of the atoms and limits the linear dependencies between
them. In order to generate a similarity graph Gx that carries
the signal proximities, the weight matrix Wx is computed,
for i, j = 1, . . . , L, such that

Wx
i,j = exp

(
−||x(i) − x(j)||2

σ2

)
.

with σ2 a parameter that was set to the mean of the pairwise
squared distances. Then, the Laplacian matrix Lx associated
to the graph Gx can be obtained from the weight matrix Wx.

3.1.2. DU Step

Our DU step considers mixed dictionaries, i.e. composed of
several types of atoms, each type presenting a carefully cho-
sen property. In the continuity of the uncertainty principles
introduced in Section 2.1, we propose here to learn dictionar-
ies with two types of atoms: local atoms on the graph, and
frequencially local — or smooth atoms. Formally, given Ml a
number of locality atoms and Ms a number of smooth atoms,
the following decomposition is performed

D =
(
D(loc),D(sm)

)
=

(
d(1), . . . ,d(Ml+Ms)

)
,

where D(loc) ∈ N × Ml denotes the locality sub-dictionary
and D(sm) ∈ N ×Ms the smooth sub-dictionary.

Then, it seems natural to penalize the smooth sub-
dictionary D(sm) learning using f (sm) the graph-smooth
dictionary penalty — see Equation (2). However, penalizing
the D(loc) locality sub-dictionary learning requires the intro-
duction of a suitable loss function, which is defined, given a
graph G, a graph distance dG — e.g. the graph geodesic dis-
tance [13] — and (c1, . . . , cMl

) a set of Ml centrality nodes
of G, as

f (loc)(D) = βl

M∑
i=1

Locci(d
(i)),

with βl > 0 a penalty parameter and such that Locci(x) =
xTPix, where Pi = Diag

(
dG(ci, v1)

2, . . . , dG(ci, vN )2
)
.

An important question for the penalty is the position of the
centers. If prior information on these centers are available, it
is possible to guide the dictionary learning by imposing them
in a fixed way. Otherwise, centrality nodes can be randomly
sampled.

Finally, given an activation matrix A ∈ R(Ml+Ms)×L, our
local-smooth dictionary learning (LSDL) problem reads like

D∗ = argmin
D(loc),D(sm)

||X− [D(sm), D(loc)]A||22 (4)

+ f (loc)(D(loc)) + f (sm)(D(sm)).

(a) Reconstruction (b) Ablation

Fig. 1. Figure (a) shows reconstruction ratios and distances
to the initial dictionary D0. Figure (b) shows the distances to
the initial dictionary D0 of smooth (light blue), locality (blue)
and mixed (dark-blue) learned dictionaries.

3.2. Resolution

Resolution approaches for the activation and dictionary up-
date steps are exposed separately in the following sections.

3.2.1. AU Step

The problem (3) is convex in the matrix A, but does not
present a closed-form solution. Thus, gradient descent can
be performed, such that the τ -th iteration is given by

A(τ) = A(τ−1) − θ∇A

(
||X−DA||2F + g(G

x) (A)

)
,

with θ > 0 the gradient step, and

∇A

(
||X−DA||2F + g(G

x) (A)

)
= 2 αs ALx

−2DT (X−DA).

3.2.2. DU Step

In order to simplify the solution of the problem stated Equa-
tion (4), we introduce the vectorized expressions v(D) ∈
RN(Ml+Ms) of D, and v(X) ∈ RNL of X. Then, the local-
smooth dictionary update problem can be reformulated as

v(D∗) = argmin
d∈RNM

||v(X)−
(
A⊗ IN

)T
d||22 + dTQd

with Q = Diag
(
βlP1, . . . , βlPMl

, βsL, . . . , βsL
)

a block-
diagonal matrix, where the graph Laplacian matrix L is re-
peated Ms times. This formulation highlights the quadratic
property of the LSDL problem and allows to derive a solu-

tion, as v(D∗) =
(
(AAT )⊗ IN +Q

)−1

(A⊗ IN )v(X).



Fig. 2. Atoms learned from all movements are presented on
the left. For local atoms, the center is indicated by a green
circle. The intensity of an atom on a node is indicated by the
color, from blue to red. The activations of each atom are pre-
sented as a concatenated time series on the right. Vertical blue
lines indicate the separation between two types of movement,
and vertical black lines separate different subjects.

4. EXPERIMENTS

4.1. Dictionary Recovery on a Synthetic Graph Signal

We first aim at reconstructing a synthetic dictionary that gen-
erated a set of signals. A random geometric graph G is gener-
ated by connecting a set of N = 500 points drawn uniformly
on [0, 1]2 through a 5-nearest neighbors procedure. The dis-
tance associated to G is the graph-geodesic distance [13].

A set of Ms = 5 smooth atoms is sampled from a Gaus-
sian distribution with covariance matrix L−1. Ml = 20 nodes
are randomly sampled and local signals at a geodesic distance
< 2 from the centers are generated from a Gaussian distribu-
tion. Atoms are concatenated to form D0 and the activations
A0 are drawn from a normal distribution, with L = 1000.
Finally, the data matrix is computed as X = D0A0.

The LSDL algorithm is applied for different values of
the penalization parameters β = βs = βl ranging from
10−4 to 104. Since center nodes are supposed to be un-
known, 100 nodes are uniformly sampled and used as cen-
ters. Two metrics are computed from the learned dictionary
D∗ and activation matrix A∗: (i) the reconstruction ratio
1 − ||X0 −D∗A∗||2/||X0||2 quantifies how well the dictio-
nary/activation pair represents the signals X0; and (ii) the
distance ||D0 −D∗||2/(Ml +Ms) between the initial dictio-

nary D0 and the learned dictionary D∗ — to which only the
Ms = 20 most active local atoms have been kept.

Three distinct behaviors appear on Figure 1.a. For β
ranging from 10−4 to 10−2, the parameters are not impor-
tant enough to affect the learning algorithm. For parameters
higher than 102, penalties enforce too smooth and local atoms
to be learned. Finally, for parameters ranging from 10−2 to
102 the reconstruction ratio remains unchanged, while the
distance to the initial dictionary decreases down to 3.10−2.

Figure 1.b presents a brief ablation study: two partial dic-
tionaries, one containing 15 smooth atoms, the other 15 local-
ity atoms were learned from the data generated by the initial
dictionary D0. The large distance to the initial dictionary for
all the parameters explored highlights the complementary na-
ture of the locality and smoothness penalties employed, forc-
ing the learning of atoms with non-redundant behaviors.

4.2. Analysis of a Movement Dataset

The studied dataset includes 34 sensors’ 3-dimensional speed
time-series — sampled at 10 Hz — recorded from 3 partici-
pants while performing seated, bilateral, arm elevation in the
sagital, scapular and frontal planes. Each movement was per-
formed three times, with a rest time of ∼ 3 sec.

The sensor graph G(sensor) is generated through a 4-
nearest-neighbors procedure with regards to the maximal
pairwise sensors distance. As the process is three-dimensional,
the signals must lie on a graph of size 3 × N — one copy
of the sensors graph for each dimension x, y and z. The
resulting graph is not connected, and signal variations are
evaluated on each spatial dimension independently.

Then, a set of Ms = 3 smooth atoms and Ml = 2 local
atoms are learned around 2 different centers — displayed in
Figure 2. The scaling parameters for the locality loss penalty
βl = 2.102 and for the smoothness penalty βs = 103 were
chosen through cross-validation. The atoms and activations
learned are presented in Figure 2.

The choice was made to restrict the number of learned
atoms in order to capture more generic phenomenons in a
common small dictionary. Despite this limitation, the decom-
position achieved a reconstruction ratio of 0.9. The choice of
movements that involve arm elevation in the different planes
has led to atom intensities that are evenly spread on the 3 di-
mensions, heavily correlated for most atoms — as the move-
ments do not involve a displacement in a single dimension.

The proposed method provides an interpretable model
that handles the high multiplicity of sensors through smooth-
ness constraints and for which the compensatory components
are assumed to be local and thus interpretable. For this ex-
ploratory experiment, intra/inter-subject differences appear
clearly in well-chosen spaces, and the different atoms pro-
duced provide an accessible basis for a clinician.
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