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Abstract—We propose a new approach for covariance change
point detection applied to graph signals. Specifically, our method
draws on the notion of graph stationarity to derive a relevant
parameterization of the covariance matrix that can be used
in a cost function. This parameterization allows prior graph
knowledge to be incorporated into the detection process and
reduces the number of coefficients to be estimated. We have
experimentally validated this method against relevant baselines,
on synthetic and real data, and showed the influence of several
parameters. These experiments demonstrated very low compu-
tational complexity, improved robustness against certain adverse
effects and competitive performance in more general contexts.

Index Terms—change point detection, graph signal processing,
covariance matrix estimation.

I. INTRODUCTION

Sensor networks are ubiquitous, generating a vast amount
of structured multivariate time series data. Examples include
electroencephalograms (EEG) capturing brain activity or me-
teorological sensors recording environmental variables. Non-
stationarity - the statistical properties of data can change over
time - is a common challenge with this type of data. Detecting
abrupt changes is of significant interest, as it can reveal critical
events, such as the onset of a neurological disorder in EEG
data or a sudden weather change in meteorological records.

Change Point Detection (CPD) methods [1] are designed
to solve this problem and can be customised to specify the
nature of the changes to be detected. In multivariate time
series, a popular choice is to analyze changes in the covariance
structure between variables [2]. Most change point techniques
in the literature focus on detecting these covariance shifts
by repeatedly computing the empirical covariance matrix on
sub-signals, such as the popular CUSUM algorithm [3]–[6].
However, these methods face several challenges. Estimating
the covariance matrix, especially in high-dimensional settings,
is difficult because it requires a large number of samples. In
addition, these estimators are sensitive to noise (especially
impulsive noise, which can be caused for instance by sensor
defect), and can lead to incorrect matrix computation and
misdetection of changes. The Graph Lasso method [7] attempts
to address these issues by promoting sparsity on the precision
matrix (inverse of covariance matrix). However, this approach
is also computationally expensive, especially for change point
detection approaches that require repeated estimations.
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To address these challenges, we propose to leverage on
the Graph Signal Processing (GSP) framework [8], which has
gained popularity for its ability to analyze structured data. The
assumption that the data lies on a predefined graph structure
(which encodes the relationships between the different dimen-
sions of the time series) has proven helpful in several tasks,
such as interpolating missing data [9] or causality discovery
[10]. In particular, we focus on the concept of graph sta-
tionarity introduced in the GSP community [11]–[13]. Indeed,
detecting a change in graph stationarity is equivalent to using
a parameterized covariance estimator that is ”guided” by the
underlying graph structure of the data. As will be seen, this
approach provides a more efficient and potentially more robust
solution to the problem of detecting covariance changes in
structured multivariate time series data where a graph structure
can be defined.

II. BACKGROUND AND NOTATIONS

In this section, we define some basic notions about GSP
(and graph stationarity) and change point detection.

In the following, for two integers a < b, a..b denotes the
integer interval {a + 1, . . . , b}. For a sequence (x1, . . . , xn),
xa..b is the sub-sequence (xa+1, . . . , xb).

A. Background on Graph Signal Processing (GSP)

Let us consider a weighted and undirected graph G =
(V, E ,W), where V is a set of N nodes, E is a set of edges
and W a weight matrix. The Laplacian matrix of this graph is
defined as L = D−W , where D is the degree matrix. Since
G is an undirected graph, L is a symmetric and positive semi-
definite matrix verifying L = UΛU⊤ with Λ the diagonal
matrix of non-negative eigenvalues of L and U the matrix
containing eigenvectors as columns, also called the Graph
Fourier basis.

A graph signal x ∈ RN on G, is defined as a mapping
x : V → R. The Graph Fourier Transform (GFT) of graph
signal x is defined as x̃ = U⊤x. A graph signal is said
to be wide-sense graph stationary (WSGS) if and only if
there exists γ = (γ1, . . . , γN ) ∈ RN

+ such that its covariance
matrix (in the statistical sense) Σ = E

[
xx⊤] can be written

Σ = Udiag(γ)U⊤ [11]–[13]. In other terms, a graph signal
is WSGS if and only if its covariance matrix is diagonalizable
in the Graph Fourier basis.



B. Background on change point Detection (CPD)

We here reuse the notations and formalism from [1]. Let us
consider a multivariate time series (or equivalently the random
process generating it) y = {yt}Tt=1 in RN . We denote the set
of ground-truth change points of y by T ∗ = {t∗1 < . . . <
t∗K} ⊂ J1, T K. Implicitly, we consider t∗0 = 0 and t∗K+1 = T
to be included in any set of change points.

When assuming that the number of ground-truth change
points is known, change point detection consists in solving
the following optimization problem

min T
|T |=K

VM(T ,y) =

K∑
k=0

cM(ytk..tk+1
), (1)

where cM denotes a cost function that takes as input the sub-
signal over a segment a..b and computes the goodness-of-fit of
this sub-signal with respect to a model M. Most cost functions
are based on probabilistic parametric models and defined as the
negative log-likelihood of the Maximum Likelihood Estimator
(MLE) over the considered segment. If one denotes by f the
density function associated to the model M parametrized by
θ, the resulting generic cost function cM is given by

cM(ya..b) = − sup
θ

b∑
t=a+1

log f(yt|θ). (2)

With such cost functions, Problem (1) can be solved exactly
with dynamic programming techniques based on recursive
computations on sub-signals. In the context of exact covariance
matrix CPD, most methods in the literature use the cost
function

cMLE(ya..b) = (b− a) log det (Σa..b) , (3)

where Σa..b is the empirical estimator of the covariance matrix
on segment a..b [2].

Alternatively, Problem (1) can be solved approximately by
relying on test statistics, and more specifically CUSUM-like
statistics with several variants [3]–[6]. As those tests only
allow to detect a single change point, these methods are often
wrapped within a suitable searching algorithm like Binary
Segmentation (BS) for multiple CPD [1].

Many of the above methods rely on the computation of
the empirical covariance matrix, i.e. require the estimation of
N(N + 1)/2 parameters which is known to be a tedious task
[14], [15]. Thus, some methods were specifically designed
to deal with this estimation issue, in the so-called “high-
dimensional” setting. In [16], Avanesov and Buzun introduce a
new statistic based on a refined Graph Lasso estimation of the
covariance matrix [7] that they use within a BS procedure.
Another alternative is to modify the cost function (3) by
replacing the empirical covariance matrix by the inverse of the
precision matrix estimated using the Graph Lasso algorithm
[7].

III. METHOD

This section describes our proposed cost function and how
it relates to the GSP framework.

A. Signal model and problem formulation

We observe a sequence (y1, . . . ,yT ) of length T of RN -
valued random variables such that ∀t ≥ 1, E[yt]/∗ = 000 and the
signal of covariance matrices E

[
yty

⊤
t

]
is piecewise constant

with only a few changes, meaning that there exists K change
point indices t⋆1 < · · · < t⋆K and K +1 matrices Σ⋆

0, . . . ,Σ
⋆
K

such that,

E
[
yty

⊤
t

]
=

K∑
k=0

1t⋆k..t
⋆
k+1

Σ⋆
k. (4)

We also assume that for any t, yt can be seen as a WSGS
graph signal, i.e. that there exists a graph G and a Graph
Fourier basis U such that

∀k, ∃γk ∈ RN
+ , Σ⋆

k = Udiag(γk)U
⊤ (5)

The objective of change point detection is to estimate the
change point locations T ⋆.

B. Proposed cost function

Assuming that on segment a..b, the yt are independent and
identically distributed (iid) and follow a zero-mean multivari-
ate Gaussian distribution with fixed covariance matrix of the
form (5), the expression of the MLE cost function as defined
in (2) can be derived as

cSTATIO(ya..b) = (b− a)

N∑
n=1

log γa..b[n], (6)

where γa..b[n] is the nth coefficient of vector γa..b. Interest-
ingly, γa..b can easily be computed from the Graph Fourier
Transform of ya..b and more specifically as

γa..b =
1

(b− a)

b∑
t=a+1

(ỹt)
2 (7)

where (ỹt)
2 is elementwise square of the vector ỹt.

Therefore, our cost function requires only the estimation
of the diagonal coefficients of the covariance matrix in the
Fourier basis of the graph, which is assumed to be known.
Intuitively, this leads to two desirable consequences (which
will be demonstrated empirically in the Results sections):
firstly, the number of parameters to be estimated is smaller
than that of the empirical covariance matrix (N vs. N(N+1)

2 ),
enabling the cost function to be calculated more robustly
for smaller sub-signals; secondly, the parameterization of the
covariance matrix enables us to take advantage of the structure
knowledge provided by the graph.

C. Efficient dynamic programming

The cost function (6) offers the nice property of being
derived from (2) and can therefore be used to find an optimal
solution of Problem (1) with dynamic programming. In order
to speed up the process, several tricks can be used.

We first compute the Graph Fourier Transform of the whole
signal and we then store the cumulative sum of the (ỹt)

2

bewteen 1 and T
∑t′

t=0(ỹt)
2 in a matrix C in RN×(T+1),



whith first column being 000. This speeds up the computation
of the estimator (7) as its computation over the segment a..b
simply amounts to subtracting the column a+1 from column
b+1 of the matrix C. Eventually, the cost over all the segments
a..b, for any 1 ≤ a < b ≤ T , is stored in a triangular matrix.
This matrix is used to run the optimization algorithm from
[17], that is accelerated thanks to the jit decorator of the
numba library. The complexity of the dynamic programming
is O(T 2N), where T is the number of samples and N is the
number of dimensions/nodes.

IV. SYNTHETIC EXPERIMENTS

In order to better understand the properties of the proposed
approach, we start by providing experiments on synthetic
data.1

A. Setup

We generate Erdős–Rényi (ER) graphs with N = 20 nodes
and a target mean degree d = 10. The edge probability p is
uniformly drawn in [pmin, pmax] with pmin = (1− σp) ∗ d

N−1

and pmax = (1 + σp) ∗ d
N−1 . The hyper-parameter σp is a

bandwidth coefficient that is set to σp = 0.4, allowing more
diversity in the graph connectivity.

The signals are generated according to the model described
in Section III-A with length T = 1000. The minimum segment
length is set to ℓ = 0.4N(N+1)

2 and we add to the signals
a Gaussian additive white noise of SNR = 20 dB. For each
simulation Nexp = 80 graphs/signals are generated.

B. Baselines

We compare our approach STATIO to three baseline meth-
ods:

• MLE: solving of Problem (1) with dynamic programming
and the cost function cMLE (3) (we used the ruptures
Python package [1])

• GLASSO: solving of Problem (1) with dynamic program-
ming and the cost function cMLE (3) where the raw empir-
ical covariance is replaced by the inverse of the precision
matrix estimated using the Graph Lasso algorithm from
[7] (we used the R package provided by the authors and
set the sparsity pernalty to 4

√
(logN/(b− a)))

• COVCP: two-sample test statistic plugged with a binary
segmentation procedure [16]. We used the R library
provided by the authors, and set both the window and
bootstrat set size to 80. Details can be found on the
github.

C. Evaluation metrics

The chosen metric to evaluate the covariance CPD task
is the F1-score F1 defined as the harmonic mean of the
precision and recall of a prediction. In the framework of
CPD, the definition of true positives relies on the choice of a
margin 0 < λ < min0≤k≤K |t∗k+1 − t∗k| [1]. In the following
experiments, we choose λ = 5 samples.

1All the material described below can be found at
https://github.com/evenmatencio/graph-signals-change-point-detection.

TABLE I: Performances of the different methods

Method F1-score Computation time (in seconds)
MLE 0.65± 0.20 12.1± 0.07

GLASSO 0.30± 0.14 537± 43
COVCP 0.34± 0.15 56± 7.2
STATIO 1.0± 0 0.5± 0.03

D. Results

a) Experiment 1: Benchmark performances: Table I
shows the results of the four methods. It appears that the
proposed method obtains the best results in terms of F1 score.
This result was expected, as the data is generated according to
our model, but it shows that the proposed algorithm is capable
of solving the formulated problem. The following experiments
will focus on how it can deal with deviations from this model.
It is interesting to note that, as the number of parameters to
be estimated is smaller than that of the other methods, the
computation time of our method is very low. In contrast, the
GLASSO method is particularly time-consuming and performs
poorly in this configuration.

b) Experiment 2: Influence of ℓ: As discussed in Section
III-B, one of the advantages of the proposed cost function is
that the number of parameters to be estimated is smaller than
for the standard covariance matrix. To investigate this question,
we have run experiments where the minimum segment size ℓ
in the data varies as a proportion of N(N+1)

2 (which is the total
number of coefficients to be estimated in the full covariance
matrix) - see Figure 1a.

As expected, MLE suffers from segment length decrease be-
cause it fully relies on the estimation of the whole covariance
matrix. However, for larger values of ℓ the standard method
shows very good performance which stresses the importance
of the parametrization deduced from (5). Precisely, our method
benefits from the low number of estimated coefficients and is
especially efficient when the segment sizes are small.

c) Experiment 3: Influence of the graph knowledge: Our
method relies on prior graph knowledge that is used in the
parametrization of the covariance matrices (5). One interesting
question is related to the robustness of our method to this
graph knowledge. To investigate this, we have run experiments
where the Graph Fourier basis provided in (5) is not exactly
the one of the ground-truth graph that generated the data, but
of another noisy graph where a certain percentage of edges
have been substituted. Figure 1b displays the F1-score as a
function of the percentage of edges replaced.

Naturally, using noisy graph knowledge decreases the per-
formance of our method. However, even in the worst cases,
one should notice that our method still outperforms the other
baselines, showing again the significant benefits brought by
the statistical simplicity of our estimator. When 50% of the
edges are changed, the performances of our method become
similar to those of MLE, which is coherent.

d) Experiment 4: Influence of noise: Figure 1c shows
the influence of the SNR on the performances of all four
methods. Here, we can see the benefits brought by the sparsity
assumption of the Graph Lasso model as both COVCP and
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Fig. 1: Influence of the stationarity segment length ℓ, of the percentage of edges replaced and of the noise level

GLASSO outperform the raw standard MLE method for low
SNR because they allow a more robust estimation of the co-
variance matrix, even if the observed signals do not respect the
sparsity assumption. However, the robustness gains achieved
with a sparse estimation are still less important than those
enabled by the parametrization (5).

V. REAL DATA EXPERIMENTS

We here show the performances of our method on a real
world usecase on EEG data.

A. Data

We use the real-world data set PhysioNet EEG Motor
Movement [18]. This data set consists of EEG signals obtained
from 109 volunteers, that were recorded using a 64-channel
EEG setup sampled at 160 Hz. Each subject went through 14
experimental runs: two baseline runs (that will not be used in
our experiments) and three repetitions of four different tasks.
During these four tasks, patterns are displayed over a white
screen for a short time length. Whenever the pattern appears,
the volunteers are asked to react accordingly, and then relax
when the target disappears. Each of the four tasks corresponds
to fist or foot movements, that can be either actually performed
or simply imagined by the subjects. The experimental runs last
for two minutes. Each run contains 29 change points evenly
spaced that successively correspond to the display and removal
of the target on the screen.

B. Experimental setup

We filtered the signals with a standard third-order band-pass
Butterworth filter (0.5 - 40 Hz). We sub-sampled the signals 8
times to achieve reasonable running times and ended up with
signals of lengths T = 2500 samples. The graph fed to the
STATIO method was built based on the positions of the sensors
of the 64-channel EEG setup. More precisely, we retrieved the
2D coordinates of the target channels stored in the easycap-
M1 montage of the mne python library. Based on these
coordinates, we built a 4-Nearest Neighbor undirected graph.
We did not include the GLASSO method because one single
experimental run was about one month with our resources.
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Fig. 2: Performances of the methods as a function of the
margin of evaluation λ

C. Results

Figure 2 displays the performances of the methods as a
function of the margin of evaluation λ (see Section IV-C).
For all the margins considered, our method outperforms the
other two, reaching almost 0.6 for a margin of 1 s, when just
over 4 seconds separate each breakpoint. It is interesting to
note that the relatively large value of the margin required to
achieve satisfying performances are not only due to the latency
of reaction time, which is commonly evaluated to 0.2 seconds
approximately [19].

VI. CONCLUSION

In this article, we have introduced a novel method for
change point detection in covariance matrices inspired by
the notion of graph stationarity. The purpose of this method
is to leverage a simple parametrization of the covariance
matrix in order to bypass the crucial limitation imposed
by the computation of the empirical covariance matrix. The
intuitive motivations behind this method were experimentally
validated in different synthetic scenarios, but also over a real
use-case. Our approach also has a very low computational
complexity which can be useful to process large multivariate
time series. Exploring more generic scenarios, would be a nice
improvement to our work. Furthermore, the sensitivity to the
graph structure used to calculate our cost function naturally
raises questions about the notion of graph stationarity. Fur-
ther theoretical study would be a significant improvement in
identifying the limits of our method.
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