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Abstract—Finding patterns in time series is crucial to under-
standing physical or physiological phenomena monitored with
sensors. Convolutional sparse coding (CSC) methods, which
approximate signals by a sparse combination of short signal
templates (also called atoms), are well-suited for this task. Nev-
ertheless, sparsity results in intractable non-convex optimization
problems. This paper introduces an algorithm, based on Multi-
path Matching Pursuit, which is novel in convolutional settings,
to efficiently and accurately estimate atoms’ localizations in time
series. We describe a principled way to improve this greedy
procedure by returning several candidate solutions instead of one.
Our approach yields better localization and signal reconstruction
on simulated data and in a real-world use case, which consists in
automatically detect damages, such as cracks and broken wires,
in overhead power lines.

Index Terms—convolutional sparse coding, orthogonal match-
ing pursuit, compressed sensing, greedy optimization, sparse
coding, sparse representation, deconvolution

I. INTRODUCTION

When studying complex physical or physiological phenom-
ena, a common approach consists in monitoring a system or a
subject with sensors. Often, finding characteristic patterns in
the resulting time series helps to understand the phenomena
at hand [1]–[3]. In this work, we study overhead power
lines, an essential part of electricity transmission systems that
transmit electrical energy along large distances. For instance,
RTE (Réseau de Transport d’Électricité), the French electricity
transmission system operator, manages more than 100,000
km of such lines. To detect cracks and broken wires due to
fretting fatigue, the Magnetic Flux Leakage (MFL) method is a
well-known non-destructive testing approach [4]. Indeed, the
magnetic field measured around a defect has an identifiable
and reproducible shape [5]–[8]; see Fig. 1 for an example.
However, simple pattern detection approaches fail when sev-
eral defects are close together and overlap; the contributions
of each defect to the signal are difficult to disentangle. In this
article, we will speak about the “time axis” for generality,
although it is rather a “position axis” for this particular
application.
Related work. Detecting characteristic local patterns is often
referred to as Convolutional Sparse Coding (CSC) [3], [9],
[10]. In this setting, the signal is modelled as a linear combina-
tion of a few short prototypical patterns called atoms, and the
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Fig. 1. Top: example of a two-meter-long noisy MFL response signal
(in arbitrary units) and its reconstruction as a linear combination of three
prototypical defects. Bottom: the three prototypical defects, ordered from
largest amplitude (bottom) to smallest (top).

objective is to estimate from noisy observations the temporal
location and type of the atoms [11]. In our application, the
dictionary is known beforehand as it is given by physical
modelling of the overhead power lines. One issue with CSC
is that it yields a non-convex optimization problem because of
the strict sparsity (enforced by a ℓ0-norm). The CSC literature
has roughly two approaches to address this problem.

In the convolutional setting, several articles propose to
solve a convex relaxation composed of a reconstruction error
and a ℓ1-based regularization to enforce sparsity [11]. The
resulting optimization problem is exactly and efficiently solved
with coordinate descent algorithms [12], [13] or proximal
gradient descent [14]. Nevertheless, the solutions to the relaxed
problem often contain spurious detections and post-processing
is needed to have sparser solutions [15].

The second type of approach includes greedy methods
which extend to the convolutional setting, Matching Pur-
suit (MP) and Orthogonal Matching Pursuit (OMP) tech-
niques [16]–[18] They are iterative methods that estimate
the position and type of a single atom at each iteration.
Greedy methods only provide a suboptimal solution, which
is problematic when the atoms are correlated [19], [20], and
overlap, as in our data.

Approaches to mitigate the suboptimality of greedy tech-
niques have been explored in a non-convolutional setting.
All compute several candidate solutions and return the one
with the lowest reconstruction error. Certain authors propose



to estimate several atoms at each iteration [21], [22]. Others
randomly draw atoms at each iteration [23]. A slightly dif-
ferent algorithm uses a so-called multipath approach, where
instead of taking the best atom, the 2nd or 3rd best are also
considered [24]–[26]. Those methods do not adapt easily to
the convolutional setting because we need to estimate both the
atom and its location, resulting in many possible combinations.
Contributions. We propose an improvement on the OMP
algorithm for the CSC problem that relies on the multipath
approach [24] introduced in a non-convolutional setting. We
adapt this methodology to take into account the fact that we
have to estimate both the location and the atom. We also
describe a novel, efficient strategy that saves computations be-
tween similar candidate solutions. Our approach is empirically
compared to ℓ1-based and greedy algorithms and is shown
to outperform them on simulated and real data significantly.
We also provide an easy-to-install Python implementation
(github.com/deepcharles/convmmp) and an online app (con-
vmmp.streamlit.app).

II. BACKGROUND ON CONVOLUTIONAL SPARSE CODING

This section formally introduces the CSC model and briefly
explains the convolutional OMP, which will be helpful when
our method is described. (In the following, JaK is the integer
interval {1, . . . , a}.)

A. Model and Task

Let y = [y1, . . . , yT ] ∈ RT be a real-valued signal with
T observations. The linear convolutional model [11] assumes
that the signal y satisfies y =

∑Nd

i=1 di ∗ z⋆
i + ε where a ∗ b

is the convolution product between two real signals a and
b, the di ∈ RTd are Nd unit norm signals (∥di∥ = 1) of
length Td ≪ T called atoms, the z⋆

i ∈ RTz are Nd (unknown)
signals of length Tz called activation signals, and ε ∈ RT is
a Gaussian white noise of same length as y. The length Tz of
the activation signals is such that the di ∗ zi have length T .

In the literature, the set of atoms {di}i∈JNdK is often called
the dictionary. Each atom di is activated at time positions
encoded by the activation signal z⋆

i . Generally, it is assumed
that only a few positions are activated, meaning that the
signals z⋆

i are sparse. The objective of CSC algorithms is to
recover the true activations z⋆

i from the noisy observations y.
This estimation amounts to solving the following optimization
problem:

min
zi∈RTz

i∈JNdK

∥∥∥∥∥y −
Nd∑
i=1

di ∗ zi

∥∥∥∥∥
2

+ λ

Nd∑
i=1

∥zi∥0

 (1)

where ∥zi∥0 is the so-called ℓ0 (pseudo-)norm, which counts
the number of non-zero elements of zi and λ > 0 is a user-
defined parameter controlling the trade-off between the data-
fidelity term and the activations’ sparsity. Recall that, here, the
dictionary is assumed known.

B. Background on conv-OMP

Let conv-OMP denote the OMP procedure in a convo-
lutional setting. This is is a greedy iterative procedure that
finds an approximate solution to the CSC problem (1) [18]. At
each iteration, it finds and records the most correlated atom
with a residual signal that is then updated by removing the
contribution of all previously found atoms. The next iteration
repeats the same operation on the new residual.

Formally, initiate the residual signal r = y and the set
T̂ = ∅ of selected pairs (t, i) ∈ JTzK× JNdK of time position
and atom index. At iteration k ≥ 1, we select one atom and
one time position by solving

t̂, î← argmax
t∈JT K,i∈JNdK

⟨r, δt ∗ di⟩2 (2)

where δt ∈ RTz is the (activation) signal that is zero every-
where except at time position t, where it is equal to 1. The set
T becomes T ← T ∪ {(t̂, î)}. To update the residual for the
following iteration, define ỹ ∈ RT the orthogonal projection of
y onto SPAN

(
{δt̂ ∗ dî for all (t̂, î) ∈ T }

)
⊂ RT , the linear

space spanned by the selected atoms and time positions up to
iteration k. The residual signal is updated: r ← y − ỹ. The
iterations end when a user-defined stopping criterion is met,
for instance, when the desired number of atoms is detected or
the norm of the residual falls below a threshold.

III. METHOD

This section describes our approach, called conv-MMP for
Convolutional Multipath Orthogonal Matching Pursuit.

A. Algorithm’s Overview

Our method is a greedy procedure that estimates the solution
of the CSC problem (1) by iteratively finding atoms correlated
with the residual, as in conv-OMP. However, instead of only
considering the most correlated atom at each iteration, our ap-
proach also looks at the 2nd, 3rd, 4th. . . most correlated atoms.
The multipath approach defines paths, which are sequences
of rankings, e.g. (2nd, 1st, 4th). For this particular path, our
approach starts by finding the 2nd most correlated position and
atom index and adds them to the set of detected atoms. Then
the contribution of this atom is removed, as in conv-OMP, and
the “1st most” correlated (with the residual) position and atom
index is added to the set of detected atoms, and the residual
is updated. In the last iteration, the 4th most correlated (with
the residual) position and atom index is added to the set of
detected atoms. Notice that conv-OMP amounts to applying
our method on the path (1st, 1st, . . . ). Also, the path length is
the number of iterations.

Usually, several paths are considered, and the one that
minimizes the reconstruction error is the output of our algo-
rithm. Contrary to the classical multipath approach [24], in the
convolutional setting, it is not obvious to rank pairs (t, i) of
time position and atom index according to their correlations:
part of our contribution is to define a relevant ranking (see
Sec. III-B). Also, we describe how to save computations
between similar paths (e.g. (2nd, 1st, 1st) and (2nd, 1st, 2nd)),



resulting in a faster algorithm, compared to the naive version
that computes all paths independently (see Sec. III-C).

B. Ordering Correlations

At a particular iteration, we have a residual signal r. The
objective is to estimate the j-th most correlated (with the
residual) pair (t, i) of time position and atom index. A naive
approach is to order pairs (t, i) ∈ JTzK×JNdK of time position
and atom according to their correlation with the residual: the
j-th best pair would the one associated with the j-th largest
correlation ⟨r, δt ∗ di⟩2. However, this strategy does not pro-
duce a diversified set of candidates because ⟨r, δt ∗ di⟩2 can
be closely approximated by ⟨r, δt+1 ∗ di⟩2 or ⟨r, δt−1 ∗ di⟩2
(notice the time shift by one sample). Indeed,

⟨r, δt ∗ di⟩ − ⟨r, δt−1 ∗ di⟩ =
Td∑
s=1

rt+sdi,s −
Td∑
s=1

rt−1+sdi,s

= rt+Td
di,Td

− rtdi,1 +

Td−1∑
s=1

rt+s(di,s − di,s+1).

If the atoms are smooth (di,s−di,s+1 ≈ 0) and vanish to zero
on the edges (di,1 ≈ 0 and di,Td

≈ 0) –both assumptions
are verified in our real-world use-case, see Fig. 1– then
⟨r, δt ∗ di⟩ ≈ ⟨r, δt−1 ∗ di⟩. Therefore, if ⟨r, δt ∗ di⟩2 is the
largest correlation, the second largest is often ⟨r, δt+1 ∗ di⟩2
or ⟨r, δt−1 ∗ di⟩2. The naive correlation ordering only pro-
duces, at first, almost identical candidate pairs.

To explore atoms that are different (in position) from each
other, we introduce a novel partial order between pairs (t, i) ∈
JTzK× JNdK of time position and atom. The first pair, denoted
(t(1), i(1)), is defined by

t(1), i(1) := argmax
t∈JT K,i∈JNdK

⟨r, δt ∗ di⟩2 (3)

where δt is defined in (2). Note that (t(1), i(1)) is the pair
selected by the conv-OMP iteration. Now assume that j pairs
have been ordered, (t(1), i(1)), . . . , (t(j), i(j)). The (j + 1)-th
pair is defined as the one that maximizes the correlation with
the residual while being located at a certain time distance ∆ >
0 from previous pairs:

t(j+1), i(j+1) := argmax
t∈JT K,i∈JNdK

s.t. ∀l∈JjK, |t−t(l)|>∆

⟨r, δt ∗ di⟩2 . (4)

This definition is natural in the sense that δt(j) ∗di(j) is more
correlated with the residual signal than δt(j+1) ∗di(j+1) , for any
j ≥ 1. In addition, the constraint on the time position ensures
that |t(j) − t(j

′)| > ∆ for any (j, j′). This prevents selecting
very close atoms and guarantees that the candidate solutions
are diversified.

C. Computational considerations

Enumerating paths. To apply conv-MMP, we need to enu-
merate promising paths. We adopt the path ordering scheme
of the original (non-convolutional) multipath approach [24].
With this scheme, called Depth First Search, paths with low
ranked atoms in the early iterations come first. The width W

is the lowest rank that is explored. For instance, the first four
paths with width W = 3 are (1st, 1st, 1st), (2nd, 1st, 1st), (3rd,
1st, 1st), and (1st, 2nd, 1st). For more details, see [24].
Complexity. For a single path, conv-MMP has the same
complexity as conv-OMP: Natom(Ccor + Cproj) where Natom
is the number of atoms to estimate, Ccor is the complexity of
finding the best correlation (2) and Cproj is the complexity
of updating the residual. (For simplicity, assume the same
complexity for finding the best correlation or the W best
ones, although there is a slight overhead.) Straightforwardly,
we have Ccor = O(NdT log Td) (using FFT-based convolu-
tions). A naive implementation of conv-MMP has complexity
NpathNatom(Ccor + Cproj) where Npath is the number of paths.
However, paths often have operations that can be shared. For
instance, in the first iteration of (1st, 1st) and (2nd, 1st), the
same correlations must be computed. Also, (1st, 1st) and (1st,
2nd) have the same first residual update. Our implementation
takes advantage of those shared operations. If we assume that
Npath = WP for a certain P , several combinatorial manipula-
tions yield a complexity (WP − 1)(Ccor +WCproj)/(W − 1);
the complexity gain over the naive implementation is larger
than WPCcor = NpathCcor.

IV. EXPERIMENTS

This section describes the experiments, simulated and real,
where our method is compared to baseline approaches.
Baselines. We compare our method conv-MMP to three
baseline methods: conv-OMP, described in Sec. II-B, Con-
volutional Matching Pursuit, conv-MP, which is similar to
conv-OMP, with a more straightforward residual update step
(no orthogonal projection), and conv-L1, which solves a con-
vex approximation of the CSC problem (1) (implementation
of [27]). For our method, we explore different numbers of
paths (3, 9, 27, 81), resulting in four versions of our method
to be evaluated: conv-MMP3, conv-MMP9, conv-MMP27
and conv-MMP81. Recall that conv-OMP is equivalent to
conv-MMP1. The time distance ∆ (4) is set to ten samples,
and the width to three.
Dictionary. In the simulated and real experiments, we use
the same dictionary derived from the physical model that
describes the real-world data. As in [5], [6], [28], the magnetic
leakage field from a steel surface is modelled by a magnetic
dipole model: the radial component Hr of the magnetic field
at position x along the overhead line is

Hr(x, y, b, σ) =
−8σbxy

[(x+ b)2 + y2] [(x− b)2 + y2]
(5)

where 2b is the width of the defect (in m), σ is the linear
density of magnetic charge (in G.m), and y is the height (in m)
of the sensor probe measured from the surface of the material.
In practice, our magnetic field sensor measures ∂Hr/∂x, up
to a multiplicative constant. An atom is defined as the signal
∂Hr/∂x measured over a cable of length 0.5 m according
to (5), for various parameter combinations (y, b, σ), chosen
by experts to reflect the kind of defects found in the real data.
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The resulting dictionary has 143 atoms of length 492 samples
(4.92 m); see Fig. 1 for a few atom examples.

A. Simulated experiments

Data. Data are generated by randomly selecting atoms from
the dictionary and positions along the cable. The number of
atoms is random, between 2 and 5. We add a Gaussian white
noise, with a Signal-to-Noise Ratio (SNR) in {0, 5, 10, 15} dB.
For each pair of (atom number, SNR), we generate 200 signals,
resulting in 3200 synthetic signals, all of length T = 738.
Metrics. A true positive is a well-detected atom, both in
position and shape. Formally, an atom di at position t is a
true positive if there is an estimated atom dî at position t̂
such that |t − t̂| is below a position margin and | ⟨di,dî⟩ |
is above a correlation margin. (We add the constraint that an
estimated atom can only detect one true atom.) We set the
position margin to five samples, and the correlation margin
to 0.95. We can compute the F1 score from the number of
true positives. We rank the algorithms for each signal by their
F1 scores and report the average rank in a Critical Difference
Diagram [29]. Here, the true number of atoms is known.
Results. Average rankings are shown on Fig. 2. First,
conv-L1 and conv-MP are the least accurate methods. Sec-
ond, we observe that more paths lead to better F1 scores. How-
ever, there is no statistical difference between conv-MMP27
and conv-MMP81, meaning that increasing the number of
explored paths above a certain point is unnecessary.

Fig. 3 shows how the F1 score evolves with the computation
time. (We restrict ourselves to signals containing three atoms
for this plot.) The first observation is that exploring more paths
leads to better F1 scores but larger computation times. Again,
we observe that the F1 score quickly reaches a plateau.

The second observation is that the computation time is
not strictly linear in the number of explored paths. In-
deed, conv-MMP3 (5.17s) is faster than running sequentially
three times conv-OMP (which is equivalent to conv-MMP1
and takes 4.1s); the same applies to conv-MMP9 and

TABLE I
APPROXIMATION QUALITY OF CONV-OMP AND
CONV-MMP9 ON THE REAL-WORLD DATA SET

Method PSNR (dB) Paired Student’s t-test
conv-OMP 26.56 (±2.97)

}
Statistics: 3.17, p-value: 0.2%.

conv-MMP9 26.79 (±2.81)

1.0 1.1 1.2 1.3 1.4
Position along the cable (m)

200

100

0

100
Measured signal
conv-OMP
conv-MMP9

Fig. 4. Example of a 50cm-long MFL response signal (in arbitrary units) and
its reconstruction by conv-MMP9 and conv-OMP.

conv-MMP27. Indeed, thanks to our efficient algorithmic
strategy, we can save intermediate results between similar
paths. Note that the amount of saved paths is a complex
combinatorial function of the number of paths; between
conv-MMP3 and conv-MMP9, there is not much gain.

B. Real-world application

Data. The real data set comprises 32 cable portions of 2
m in length, all containing various defects that illustrate the
challenges in energy infrastructure maintenance. Maintenance
engineers’ objective is to detect the position and type of defects
using only the MFL signal to intervene in the correct area of
an overhead power line (which can be several hundred meters
long). Here, no ground-truth information is available about
the positions and characteristics of the defects. However, we
inspected the cables three times, i.e. the same measurement
procedure has been applied three times on each cable. In total,
there are 96 signals (32× 3).
Metrics. Without ground truth, we only compare the re-
construction quality. In that regard, the Peak Signal-to-Noise
Ratio (PSNR) is a common measure. It is expressed in dB
and defined, for a true signal u with T samples and its
approximation û, by

PSNR(u, û) := 20 log10(maxu)− 10 log10

(
∥û− u∥2 /T

)
.

The “true” signal is the average over the three measurements
for each cable portion; we estimate three atoms for each signal.
Results. The results are shown in Tab. I: only conv-OMP
is compared to conv-MMP as we have shown that is the
best non-multipath approach for CSC on simulated data. The
reconstruction is better for conv-MMP9 (larger PSNR). Using
a paired Student’s t-test, we show that our method is even sig-
nificantly better (p-value 0.2%). Fig. 4 displays the difference
in reconstruction on an illustrating example. On this overhead
line portion, conv-MMP9 can find a qualitatively better atom
combination than the baseline approach conv-OMP.

V. CONCLUSION

We have introduced an efficient algorithm to perform CSC
on signals that can be decomposed with a few overlapping pro-
totypical atoms. Our method outperforms common baselines
on simulated and real-world data.
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