
An Interpretable Distance Measure for
Multivariate Non-Stationary Physiological Signals

Sylvain W. Combettes, Charles Truong, and Laurent Oudre
{sylvain.combettes, charles.truong, laurent.oudre}@ens-paris-saclay.fr
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Abstract—We introduce dsymb, a novel distance measure for
comparing multivariate non-stationary physiological signals. Un-
like most distance measures on multivariate signals such as
variants of Dynamic Time Warping (DTW), dsymb can take into
account their non-stationarity thanks to a symbolization step.
This step is based on a change-point detection procedure, that
splits a non-stationary signal into several stationary segments,
followed by quantization using K-means clustering. The proposed
distance measure leverages the general edit distance that is
applied to the symbolic sequences. The performance of dsymb

compared to two commonly used DTW variants is illustrated
by applying it to physiological signals recorded during walking
protocols. In particular, dsymb is shown to be interpretable: its
symbolization detects the segments that correspond to salient
behaviors. An open source GitHub repository is made available
to reproduce all the experiments in Python.

Index Terms—distance measure, multivariate signals, non-
stationarity, symbolic representation, change-point detection, in-
terpretability

I. INTRODUCTION

In the past ten years, sensors have become incredibly preva-
lent in various fields such meteorology, finance, healthcare,
monitoring, and epidemiology. In healthcare, sensors can be
worn by subjects and are capable of measuring different
variables. For example, foot-worn Inertial Measurement Units
(IMUs) can provide the accelerations and angular velocities
in the 3D space [21]. The amount of physiological signals
generated by these sensors is massive, and studying them is
of paramount importance. For example, the study of human
locomotion can lead to early detection and prevention of the
risk of fall of pathological subjects. In order to perform inter-
individual comparisons or longitudinal follow-up using these
physiological signals, it is crucial to define an appropriate
distance measure between them. However, when recorded
over a long period of time or during complex protocols, the
signals are often non-stationary, i.e. their statistical properties
change over time. Think, for example, of a connected watch
worn for an entire day, during which the subject performs
several different activities. A crude comparison of waveforms
obtained over two consecutive days (in the time or time-
frequency domain) is likely to produce irrelevant results,
because, intuitively, the comparison should be made at the
level of actions, i.e. stationary phases.

Our challenge in this article is to define an interpretable
distance measure between multivariate and non-stationary sig-
nals. Defining such a distance is difficult because we have

to take into account both interactions between dimensions
and abrupt changes in signals caused by the non-stationarity.
Several distance measures for multivariate signals exist in
the literature (see Section II for a overview). For instance,
numerous variants of the popular Dynamic Time Warping
(DTW) can be applied to multivariate time series [1]. Those
variants can also compare signals of different lengths and
align temporal misalignments. However, DTW distances are
designed to find alignements directly on the raw waveforms:
between samples (if both signals are processed in the time
domain) or frames (if they are processed in the time-frequency
domain). Therefore, the concept of stationary phases is not
explicitly taken into account in the distance computation. As
will be seen in Section V, this property makes them less
suitable and less interpretable in the context of non-stationary
signals.

In this article, we propose to handle the non-stationarity
by using an adapative symbolization process. First, we apply
change-point detection to the multivariate non-stationary sig-
nal to divide the signal into several stationary segments. Next,
a clustering procedure assigns a symbol to each stationary
segment. These symbols are directly interpretable, as each
symbol represents a specific type of behavior within the signal.
Once the signal is transformed into a symbolic sequence, we
construct a distance measure called dsymb which is inspired
from bioinformatics and specifically crafted for these symbolic
sequences.

We apply dsymb on time-frequency representations of phys-
iological signals obtained in the context of gait analysis. We
show that the symbolic sequences resulting from this data
allow for a native and interpretable analysis. Furthermore,
compared to the multivariate variants of DTW, dsymb makes
more sense regarding the data and metadata, and provides
more intuitive results when comparing different exercises or
subjects.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of distance measures on real-
valued multivariate signals and of distance measures on
symbolic sequences obtained by symbolic representations.
Section III introduces the novel dsymb distance measure,
associated with its novel multivariate symbolic representation.
Section IV presents the data set of physiological signals
(human locomotion) on which dsymb is applied. Section V
contains an experimental evaluation of dsymb compared to



variants of DTW. Section VI provides concluding remarks.

II. BACKGROUND

In this section, we review popular distance measures on real-
valued multivariate signals and on symbolic sequences. We
then propose a short overview of the symbolization techniques
that allows to transform a real-valued multivariate signals into
a symbolic sequence.

A. Distance measures on multivariate signals

We focus here on distances that can cope with signals of dif-
ferent lengths. Such distances are called elastic distance mea-
sures. Dynamic Time Warping (DTW) [2], which is arguably
the most popular of this group, has been used in numerous data
mining tasks [1]. One important feature of DTW is its robust-
ness to time warping, that is, a contraction or dilatation of the
time axis. However, it is only defined for univariate signals.
Recently, several strategies have been designed to extend DTW
to multivariate signals. Two popular approaches are often used
in practice: the independent and dependent strategies [3]. In
the independent strategy, the univariate DTW is applied to
each dimension separately, and the resulting distances on each
dimension are summed. The dependent strategy considers the
multivariate series as a single series in which each timestamp
is associated to a single multidimensional point. The DTW
scheme is then applied using Euclidean distances between
the multidimensional points of the two series. Other variants
of multivariate DTW exist. One such variant is Derivative
DTW [4] which applies DTW, not directly on the raw signals,
but on their first derivative, in order to prevent unnatural
warpings when there is variability in the signals. Another
variant, known as Weighted DTW [5], aims at avoiding large
warpings by penalizing them using a non-linear multiplicative
weight. Both Derivative DTW and Weighted DTW can be
combined into a variant called Weighted Derivative DTW.

Distances based on DTW have been used successfully to
compare small extracts from multivariate data, but tend to
become less suitable for long non-stationary signals. This is
because DTW distances are based on a realignment procedure
that operates at the level of individual samples and does not
take into account the concept of stationary phase.

B. Distance measures on symbolic sequences

A popular distance measure on strings is the edit distance,
which is the minimal cost of a sequence of operations that
transform a string into another. The edit distance is also
known as the Levenshtein distance [18]. The allowed simple
operations are the following:

• Insertion of a character in a string.
• Deletion of a character in a string.
• Substitution of characters in both strings.

Each operation is associated with a cost, that also varies upon
the transformed characters. The total cost is the sum of the
costs of the simple operations. The edit distance can handle
symbolic sequences of varying lengths, thanks to the insertions
and deletions operations. Many other distances have been

defined for symbolic sequences such as the Longest common
subsequence (LCSS) [19], [20]. We refer an interested reader
to [17] and [1] for an extensive review.

C. Symbolization

The basic principle of the distance measure we propose
between multivariate signals is to build on existing distance
measures for symbolic sequences through the use of symbol-
ization.

Symbolization transforms a real-valued signal Q of arbitrary
length n into a discrete-valued signals Q̂ of smaller length w ≤
n, called a symbolic sequence. A symbolic representation is
often characterized by the number A of possible values for the
symbols, also known as the alphabet size. A common symbolic
representation for univariate signals is Symbolic Aggregate
approXimation (SAX) [6], [8] that has successfully being used
in several data-mining task such as classification [8], [11],
clustering [8] or indexing [14]. Other symbolization techniques
for univariate signals include Symbolic Fourier Approximation
(SFA) [9] or Adaptive Brownian Bridge-based Aggregation
(ABBA) [10].

Symbolization methods specifically designed for multivari-
ate signals are rarer in the literature. Trend-based and Valued-
based Approximation (TVA) [12] allows multivariate signals
classification by discretizing the means and the trends on
uniform segments: U for upwards, D for downwards, or S
for straight trend, then combining them on each dimension.
SAX-ARM [13] uses SAX to mine association rules efficiently
among the deviant events of multivariate time series. However,
for both these methods, the symbolization does not natively
handle multivariation, but consists in multiple univariate sym-
bolizations that are then handled by a data mining algorithm.

III. THE dsymb DISTANCE MEASURE

This section introduces dsymb, a novel distance measure on
multivariate signals of possibly different lengths. This distance
measure is designed to handle non-stationarity and to be
interpretable. The proposed distance is computed in several
steps:

1) The multivariate signal is partitioned into stationary
segments using a change-point detection procedure,

2) Each stationary segment is assigned a symbol through
K-means clustering,

3) The final distance dsymb is computed as the general edit
distance between the symbolized version of the signals.

Before describing in detail each step, we show in Figure 1
an example of the proposed symbolization on a spectrogram
from the Gait data set that will be described in Section IV. Its
symbolic representation is displayed below the spectrogram.
The different regimes in the spectrogram seem to be detected.

Let Q = (q1, . . . , qn) and C = (c1, . . . , cm) be two real-
valued multivariate signals of dimension d, of lengths n and
m respectively. We assume that each dimension of Q and C
have been normalized to zero mean and unit variance.



Fig. 1. Example of symbolization of a spectrogram from the Gait data set (see
Section IV). The top plot is the spectrogram with the obtained segmentation
bins. The bottom plot, called a color bar, is a visualization of the resulting
symbolic sequence 1373731. The segment limits are indicated with vertical
dashed lines.

A. Step 1: Adaptive Segmentation

Adaptive signal segmentation consists in applying a change-
point detection algorithm on the signal at hand, say signal Q
with n samples. In a nutshell, change-point detection finds
the w∗ unknown instants t∗1 < t∗2 < . . . < t∗w∗+1 where some
characteristics (here, the mean) of Q change abruptly. A recent
review of such methods is given in [15]. In the context of our
symbolization, the number of changes w∗ is unknown and
must be estimated too.

The change-point estimates t̂1, . . . , t̂ŵ+1 (ŵ is the number
of detected changes) are the minimizers of a discrete optimiza-
tion problem:(

ŵ, t̂1, . . . , t̂ŵ+1

)
:= argmin

(w,t1,...,tw+1)

w+1∑
k=0

tk+1−1∑
t=tk

∥qt − q̄tk:tk+1
∥2 + λ(w + 1) (1)

where q̄tk:tk+1
is the empirical mean of {qtk , . . . , qtk+1−1}

and λ > 0 is a penalization parameter. (By convention,
t0 := 0 and tw+1 := n.) The penalized formulation (1) seeks a
compromise between the reconstruction error given by the sum
of quadratic errors and the complexity given by the number
of change-points. Problem (1) is solved using the Pruned
Exact Linear Time (PELT) algorithm [16], which is shown to
have O(n) complexity under the assumption that the segment
lengths are randomly drawn from a uniform distribution.

Intuitively, the λ parameter penalizes the introduction of a
new change-point: when λ is small, many change-points are
detected. Once the user chooses a penalty λ, the segmentation

procedure returns the segment bins and the estimated number
of segments. For calibration purposes, we use the standard
scaling λ = ln(n) [15].

Examples of segmentation of two spectrograms are given
Figure 1. The proposed segmentation returns symbolic se-
quences of different lengths and splits the non-stationary
multivariate signal into several segments that look stationary.

B. Step 2: Symbolization

Once the segment boundaries have been determined for all
multivariate signals in our data set, the mean per segment (in
dimension d) is computed for each multivariate signal. The
means per segment are centered and scaled to unit variance.
Thanks to Step 1, the segments correspond to mean-shifts,
thus it is reasonable to represent each segment by its mean
value. Then, these means per segment, from all segments of
all multivariate signals in our data set, are clustered using
the K-means algorithm where the number of clusters is
the desired number of symbols A. Finally, each segment is
attributed a symbol: the label of its assigned cluster. Due
to the symbolization through clustering, there is no reason
for the obtained symbols to be equiprobable. Having non-
equiprobable symbols can be useful in several tasks such as
anomaly detection or outlier removal. Indeed, the segments
that are attributed to rarely obtained symbols can be considered
as containing anomalies.

C. Step 3: Compute the Distance Measure dsymb

The proposed dsymb distance measure leverages the general
edit distance described in Section II-B. The operation costs of
the edit distance are defined so that they take into account the
dissimilarity between individual symbols:

• The substitution cost sub(a,b) for individual symbols a
and b is the Euclidean distance between the cluster center
Ga of symbol a and the cluster center Gb of symbol b

sub(a,b) = ∥Ga −Gb∥2 . (2)

• For all characters, the insertion and deletion costs are
fixed to submax, where submax is the maximum value of
the modified substitute costs in Formula (2).

Given the costs, dsymb should do more substitutions than
insertions or deletions.

The input of dsymb is a replicated version of the sym-
bolic sequences. Let Q̃ and C̃ be the symbolic represen-
tations of Q and C respectively, of word lengths wQ and
wC respectively. The segments obtained from the adaptive
segmentation step are of varying lengths. We incorporate
the segment length information into the symbolic sequences
by replicating each symbol proportionally to its segment
length. Let ℓQ,1, . . . , ℓQ,wQ

and ℓC,1, . . . , ℓC,wC
be the seg-

ment lengths resulting from the segmentation of signals Q
and C respectively. Each segment length is divided by the
minimum of all segments lengths of all involved symbolic
sequences (here Q̂ and Ĉ) to obtain the normalized segment
lengths ℓ̂Q,1, . . . , ℓ̂Q,wQ

and ℓ̂C,1, . . . , ℓ̂C,wC
. Then, the sym-

bolic sequences are replicated by the normalized lengths. In



Fig. 2. Schematic protocol recorded by the sensors that are located with red
squares. Source: [21].

Fig. 3. Scaled univariate gait signals of the left and right foot activities
corresponding to the same recording from the human locomotion data set [21],
with 1, 938 samples each.

the example of the symbolic representation of Q, the symbol
of the first segment ℓ̂Q,1 times, then the symbol of the second
segment ℓ̂Q,2 times, etc. Finally, dsymb(Q,C) is equal to
the general edit distance between these replicated symbolic
sequences.

IV. PHYSIOLOGICAL SIGNALS: HUMAN LOCOMOTION

In this article, we apply the dsymb distance measure to
an open-access data set of real-world physiological signals
recorded in the context of human locomotion analysis [21].

A. Data and transformations

In this article, walking data consists of angular velocity
recorded on the left and right feet using a pair of MTw XSens
sensors (sampling frequency: 100 Hz). The gait protocol for
all subjects is depicted in Figure 2: standing still for 6 sec,
walking 10 meters at the speed they felt comfortable with,
turning around, walking back to the initial position, and
standing for 2 sec. Note that since the subjects perform the
protocol at different speeds, each recording is of different
duration. Examples of raw signals, recorded for a healthy
subject, are displayed on Figure 3.

Since locomotion is an activity that has a strong periodic
component, it is common in the literature to process such
signals in the time-frequency domain. For each univariate gait
signal, we compute its Short Time Fourier Transform (STFT),
with a window length equal to 300 samples (3 seconds) and
overlap length of 299 samples (providing one frame each 0.01
seconds). Only the 0–5 Hz frequency band, where phenomena
of interest are contained, is kept. The norms of the STFT
coefficients are computed and concatenated, providing d = 16

frequency bins per frame (14 per signal). The output data
will be seen as a d-dimensional multivariate signal. The
spectrogram associated to the left foot of Figure 3 is displayed
on the top of Figure 1. Comparing Figure 1 to Figure 3, we can
observe that the static phase at the beginning of the recording
and the change of periodicity around the middle appear clearly
on the spectrogram. The spectrogram can therefore be seen as
a non-stationary multivariate signal, on which we can apply
the dsymb distance measure.

B. Subjects

The data set is composed of 221 recordings: 192 from
healthy subjects, 21 from patients with neurological patholo-
gies (such as cerebellar disorders) and 8 from patients with
orthopedic pathologies (such as knee injuries). Note that each
recording is associated with two signals: one for each foot.

V. EXPERIMENTAL RESULTS

In this section, dsymb is applied to the open-access human
locomotion data set described in Section IV, which is com-
posed of 442 spectrograms. The number of symbols A is set to
9, as in previous publications [10]. A Python implementation
of dsymb, along with codes to reproduce the figures and scores
in this paper, can be found in a GitHub repository1.

A. Interpretation of the symbolization

Symbolizations for an extract of 60 of the 442 spectrograms
are shown in Figure 4. In this visual, each symbol is associated
with a different color, allowing symbolisations to be displayed
as color bars.

Three comments can be done from visual inspection. First,
the general structure of the symbolic sequences are coher-
ent with the protocol defined in Section IV. We observe
a alternation of several stationary segments: the standing
still segment (which is always associated to symbol 1), one
segment corresponding to the initiation step, one walking
segment, one U-turn segment, one walking segment, one
segment corresponding to the termination step, and one final
standing still segment. The change-point detection procedure
allows to precisely detect the boundaries of these segments
and to capture the non-stationary structure of the signals.

Second, we notice that each symbol is associated with a
specific type of behavior. This can easily be highlighted by
plotting the centroid corresponding to each symbol, which is
a vector of dimension 16 that captures the average spectrogram
frame for all its segments. These centroids can be interpreted
as Power Spectral Densities (PSDs) and are displayed on
Figure 5. Three types of behaviors can be found:

• Flat behavior (symbol 1) which is likely to correspond
to the static phase.

• Harmonic behavior (symbols 0, 2, 4, and 7) where the
spectral content is mostly carried by one fundamental
frequency and its first harmonic, and which corresponds
to regular walking with a periodic structure.

1https://github.com/sylvaincom/d-symb



Fig. 4. Color bars for several signals of different pathology groups that
are separated by white dashed horizontal lines. Each row is the color bar
corresponding to a symbolic sequence. Only a subset of 60 out of the 442
signals is shared for conciseness of visualization.

Fig. 5. Power spectral density for each symbol.

• Low-pass behavior (symbols 3, 5, 6, and 8) that is linked
to initiation/termination steps and U-turn.

These observations are also confirmed when running a hier-
archical clustering algorithm on the distance matrix between
centroids and visualising the associated dendrogram (see Fig-
ure 6).

Third, one can observe that each symbol is not only char-
acteristic of a human locomotion regime, but it can also be
the ”signature” of a pathology group or a laterality. Indeed, as
displayed in Figure 7, some symbols are specific to the left
or right foot, or to a particular pathology group. For example,
symbol 6 mostly corresponds to the right foot and symbol 7

Fig. 6. Dendrogram: distance between the individual symbols and how they
are grouped according to hierarchical clustering.

Fig. 7. Histograms of the symbols obtained throughout all 442 symbolic
sequences, with an emphasis on the laterality (top) and on the pathology group
(bottom). For the bottom histogram, the healthy subjects are not displayed
because they are the majority group and would alter the visualization.

has only been assigned to the neurological group.
In conclusion, it appears that the proposed symboliza-

tion enables us to find the structure of the signals, and to
characterize each segment according to its type (walk, U-
turn, etc.), and its links with a specific group. As dsymb

is based on these symbolic sequences, this suggests that all
these phenomena will be taken into account when comparing
multivariate signals.

B. Interpretation of the dsymb distance measure

Based on the previously described symbolizations, the dis-
tance matrix (according to the proposed distance measure
dsymb) between all 442 multivariate signals are computed.
For sake of comparison, the distance matrix for the depen-
dent DTW (DTW-D) and the independent DTW (DTW-I)
(see Section II) are computed. Note that the DTW distances
are computed directly on the spectrograms (and not on the
symbolic sequences).

In a first experiment, for each distance measure, the silhou-
ette coefficient is calculated using the distance matrix and the
ground truth labels corresponding to the pathological group



TABLE I
SUMMARY OF THE SILHOUETTE SCORES FOR EACH DISTANCE MEASURE,

AVERAGED OVER ALL SIGNALS.

Distance measure Mean Silhouette score Median Silhouette score
DTW-D 0.15 0.18
DTW-I 0.15 0.19
dsymb 0.33 0.40

(healthy, neurological, or orthopedic). The score is bounded
between −1 for incorrect grouping and +1 for highly dense
and well-separated groups. The obtained Silhouette scores are
given in Table I. According to these results, dsymb provides
groups that are denser and better separated than DTW-D and
DTW-I. It seems that dsymb better captures the properties of
each group and is able to detect subtle differences between
subjects. This can probably be explained by the symbolization
process and the relevance of the different symbols already
highlighted in Section V-A.

For the second experiment, let us consider two scaled
univariate gait signals of different lengths. These signals are
displayed on Figure 8 along with the symbolization of their
spectrograms. The number of samples of the top signal is
2, 550 and for the bottom, it is 1, 994. Their difference in
length is 556, while the mean difference of lengths out of
all 442 signals is 468, hence these signals can be considered
to be of different lengths. The dsymb distance between these
two signals is 70, while the mean of dsymb out of all 442
signals is 155. Thus, these signals are considered similar by
dsymb. Therefore, despite being of dissimilar lengths, signals
can be considered as similar by dsymb. This suggests that
dsymb is robust to the difference in lengths and focuses on
the phenomena of interest in the signals.

Fig. 8. Two scaled univariate gait signals of different lengths, along with the
symbolization of their spectrograms.

For the third experiment, the distance distribution between
the right and left feet for a given recording is studied. As

Fig. 9. Left and right foot activities of a subject with a neurological pathology.

TABLE II
MEAN RANK OF QUERYING A SIGNAL’S OPPOSITE LATERALITY.

Pathology group
Distance measure Healthy Neurological Orthopedic

DTW-D 15.8 19.9 6.4
DTW-I 6.7 12.6 3.9
dsymb 9.3 5.1 2.0

can be seen on Figure 3, the structure of both signals are
rather similar for these healthy subjects, except for the U-
turn segment. Indeed, during a healthy U-turn, one foot turns
around, while the other serves as a support foot, thus creating
an asymmetry in the recorded signals. On the contrary, for
pathological subjects whose gait is affected, right and left foot
movements tend to be more symmetrical, even in the U-turn
segment, as can be seen in Figure 9. Then, although it may
appear counter-intuitive, a good distance between the right and
left feet is expected to be large for healthy subjects and small
for pathological ones. To investigate this question, a query-by-
content task is conducted. Given a recording of a right foot, we
compute the rank at which the corresponding left foot is found
according to dsymb, DTW-D, and DTW-I. The average ranks
for each distance measure and each group are displayed on
Table II. We observe that the results obtained with dsymb are
coherent with the medical considerations: the average ranks are
large for healthy subjects and small for pathological subjects.
On the contrary, both DTW-D and DTW-I fail to capture this
property: this can easily be shown by considering the ranks
obtained on the neurological group.

VI. CONCLUSION

We have introduced dsymb, a novel distance measure on
multivariate and non-stationary signals. dsymb leverages the
general edit distance. It uses a novel symbolization scheme for
multivariate signals to transform the real-valued multivariate
signals into symbolic sequences, that are then fed to the edit
distance. Thanks to the adaptive segmentation of the proposed
symbolization, dsymb can handle the non-stationarity, which
is remarkable.
dsymb has been applied to spectrograms of gait signals,

which are multivariate and non-stationary. Experiments have
shown how interpretable the symbolization is. Indeed, each



symbol corresponds to a specific regime of human locomotion.
Moreover, dsymb is more suitable than DTW-D and DTW-I
in order to compare multivariate non-stationary signals. For
instance, it creates groups that are more dense and better
separated. Please note that this article primarily addresses
the use case of human locomotion to exemplify the various
properties of dsymb. However, dsymb is not limited to Gait
analysis and can be effectively utilized for analyzing any other
type of data as well.
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