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Abstract

This paper proposes an automatic method to calibrate change point detection
algorithms for high-dimensional time series. Our procedure builds on the ability
of an expert (e.g. a medical researcher) to produce approximate segmentation
estimates, called partial annotations, for a small number of signal examples. This
contribution is a supervised approach to learn a diagonal Mahalanobis metric,
which, once combined with a detection algorithm, is able to reproduce the expert’s
segmentation strategy on out-of-sample signals. Unlike previous works for change
detection, our method includes a sparsity-inducing regularization which perform
supervised dimension selection, and adapts to partial annotations. Experiments on
activity signals collected from healthy and neurologically impaired patients support
the fact that supervision markedly ameliorate detection accuracy

1 Introduction
The task of change-point detection, or signal segmentation, is a crucial step in numerous machine
learning pipelines that handle time series. Roughly, it consists in finding the temporal boundaries of
the successive regimes of a multivariate signal. There are a great deal of applications, from sleep
monitoring [8], DNA sequences [4], study of neurological disorders [2], etc. Practically, the expert
(e.g. an medical researcher or a biologist) must choose by themself the most suitable change-point
detection procedure from the vast associated literature [12]. One particularly important parameter to
select is the kind of change to detect, which is related to the signal representation or, similarly, the
metric to measure the distance between samples. This calibration step is complex, time-consuming
and often achieved by a trial and error. However, more often than not, the expert is able to manually
segment a few signals, at least partially (i.e. give approximate change locations). For instance,
Figure 1 shows the partial annotation of an expert: on a signal collected by monitoring, with an
inertial sensor, a subject performing a sequence of simple activities (stand, walk, turn around, walk,
stop) [2], a medical researcher has indicated a rough estimation for the activity changes. The objective
of this work is to formulate a procedure to automatically learn from segmentation examples (i.e.
signals and their partial annotations) an appropriate metric. Combining the learned metric with a
change-point detection algorithm could then replicate the expert’s segmentation strategy.

The change point detection problem. Consider a Rd-valued signal y = [y1, y2, . . . , yT ] with T
samples. Formally, change-point detection with an fixed number K of changes consists in solving the
following discrete optimization problem

{t̂1, t̂2, . . . , t̂K̂} = arg min
{t1,t2,...,tK}

[
K∑

k=0

tk+1−1∑
t=tk

∥∥yt − ȳtk..tk+1

∥∥2] (1)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



0.0

0.5

Ac
c.

 (m
/s

²)

0 5 10 15 20 25
Time (s)

0

100

200

An
g.

 sp
ee

d 
(d

eg
/s

) Annotation

Figure 1: Signal example with partial annotation. Two (out of 6) dimensions of a gait signal
(acceleration and angular speed along one axis) are shown (see Section 3 for details). The annotation
here is partial (the exact location of the change is not provided); annotated portions are 0.5 second
long.

where ya..b is the empirical mean of the sub-signal {yt}b−1
t=a and t0 := 1 and tK+1 = T+1 are dummy

indexes and ∥·∥ is a user-defined norm on Rd (e.g. the Euclidean norm). The indexes {t̂1, t̂2, . . . , t̂K̂}
are the instants when the signal has the most significant mean-shifts. A number of methods have been
developed to optimize this sum of residuals (see [12] for a review). Algorithms based on dynamic
programming solves Problem 1 exactly with a complexity of O(dKT 2). This is the method that
will be adopted. Any faster but approximate methods such as window-based procedures and binary
segmentation could be used instead, depending on the operational constraints.

Learning a relevant metric. This article focuses on the calibration of the norm ∥·∥, which is related
to the type of change that can be detected. The chosen norm is a Mahalanobis-type (pseudo-)norm
∥·∥M such that ∥x∥2M := x⊺Mx (∀x ∈ Rd) where M ∈ Rd×d a positive semi-definite (psd) matrix.
In this work, only diagonal matrix are considered, i.e. M = diag(w) for a vector w ∈ Rd

+ of positive
weights. Calibration reduces to finding an appropriate w, which can be seen as a scaling of each
dimension p by wp. If w is sparse, the learn metric even performs variable selection. Replacing in (1),
the norm ∥·∥ by ∥·∥diag(w) with a properly calibrated w is particularly important for high-dimensional
signals which might contain noisy components that alter change detection algorithms. While there
are many articles focused on calibrating segmentation methods in a unsupervised way [12], only a
few works have tackle this problem from a supervised standpoint [7, 11] and none, to the best of our
knowledge, have added a sparsity constraints to the weight vector w.

Contributions. We propose a procedure to learn from expert labels an appropriate norm that can
both replicate the segmentation strategy of the expert and and select important signal dimensions
for this task, thanks to a sparsity regularization. This procedure is applied on physiological signals,
collected from healthy and neurologically impaired patients to asses their gait.

2 Method

The procedure consists in two steps: (i) a learning step during which, a weight vector ŵ is learned
using labelled signals, and (ii) a prediction step during which a change-point detection procedure is
applied to out-of-sample signals to segment them. This section formally introduces the nature of the
labels provided by the expert and the metric learning approach.

2.1 From annotations to constraints.

Annotations are provided by an expert and transformed into triplet constraints, which are then fed to
the sparse metric learning algorithm. Annotations can either be full or partial.

Full annotations. For each training signal y(l), a full label consists in the set of change points
T (l) = {t(l)1 , t

(l)
2 , . . . }. The set T (l) includes all the changes contained in the signal y(l), according

to the expert.
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Partial labels. For each training signal y(l), a partial label consists in the set of intervals S(l) =

{[s(l)1 , e
(l)
1 ], [s

(l)
2 , e

(l)
2 ], . . . } that contain a change point. Instead of giving the exact position of a

change t
(l)
k , the expert only provides an approximate position [s

(l)
k , e

(l)
k ] such that t(l)k ∈ [s

(l)
k , e

(l)
k ].

All the changes contained in the signal y(l), according to the expert, are in one of the intervals of
the set S(l). Each interval [s(l)k , e

(l)
k ] contains only one change and the intervals do not overlap. An

example of partial annotations is shown on Figure 1.

From label to triplets of samples. The proposed metric learning procedure relies on triplets
of samples (anchor sample, positive sample, negative sample). Using a full label T (l), a triplet
can be created as follows: for any anchor sample yt in a certain segment [t(l)k , t

(l)
k+1[, a positive

sample is any element of the same segment yt+ of [t(l)k , t
(l)
k+1[ (except the anchor sample) and a

negative sample yt− is any element of the previous segment [t(l)k−1, t
(l)
k [ or the following segment

[t
(l)
k+1, t

(l)
k+2[. Using a partial label S(l), a triplet can be created similarly: for any anchor sample

yt in a certain segment [e(l)k , s
(l)
k+1], a positive sample is any element of the same segment yt+ of

[e
(l)
k , s

(l)
k+1] (except the anchor sample) and a negative sample yt− is any element of the previous

segment [e(l)k−1, s
(l)
k ] or the following segment [e(l)k+1, s

(l)
k+2]. Intuitively, two samples that belong to

the same homogeneous segment (i.e. without change) are from the same class, while two samples
that belong to two consecutive segments (i.e. separated by a change point) are from different classes.

2.2 Sparse metric learning
Let D(l) be the set of triplets generated from the labels (full T (l) or partial S(l)). The sparse metric
learning procedure for change-point detection consists in solving the following optimization problem

min
w∈Rd

+

∑
l

1

|D(l)|
∑

(yt,yt+ ,yt− )∈D(l)

(
1 + ∥yt − yt+∥

2
w − ∥yt − yt−∥

2
w

)
+

 + λ ∥w∥1

 (2)

where [·]+ = max(0, ·) and λ > 0 controls the trade-off between the sparsity of w and the triplet
constraints. This is simply the sum over the training set of the margin-based hinge loss and a sparsity
inducing regularization. The learned ŵ, which is the solution of Problem 2, is then such that the
distance between samples from the same segment is smaller than the distance between samples from
consecutive regimes (separated by a change-point). Because there can be a large number of possible
triplets in D(l), learning a weight vector w can be computationally costly. A sampling strategy is
frequently used to focus to reduce the computational burden; such a strategy is often called triplet
mining [6]. In this work, a fixed number of triplets is simply sampled at random from each set
D(l). Also, Problem 2 includes a non-smooth regularization and large number of triplet constraints,
stochastic composite optimization has been proposed [9]. This is an iterative minimization algorithm
where each step is a stochastic gradient step followed by the application of a proximal operator (for
the ℓ1 norm). This work uses the implementation of [3].

3 Applications on physiological signals
In the following, our method is denoted SML-CPD for Sparse Metric Learning for Change-Point
Detection.

Data. The Gait data set contains 42 labelled time series (sampling frequency: 100 Hz) from an
inertial sensor placed at the lower back of a subject performing a fixed sequence of simple activities:
“Stand”, “Walk”, “Turnaround”, “Walk”, “Stop”. The objective is to detect the time indexes at which
the activity of the subject changes (each signal has 4 change-points). The time series have d = 6
dimensions: the accelerations (m/s2) along three axes (X , Y and Z) and the angular velocities
(deg/s) around the same three axes. Figure 1 shows an example (only two dimensions are displayed).
The time-frequency representation is the short-term Fourier transform (STFT), computed with 300
samples per segment and an overlap of 299 samples, of each dimension; the concatenation of all
STFT yields a d = 906-dimensional signal. As for the partial annotations, a medical researcher used
an annotation tool to provide portions of 50 samples (0.5 s) around activity’s changes.
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Figure 2: (a) Accuracy is plotted versus the allowed error margin (in seconds). The top curve
(SML-CPD) has the best accuracy for all margin levels. (b) Selected frequencies by SML-CPD for
each dimension of the signal.

Detection algorithms. Our method SML-CPD is compared to two common change-point detection
algorithms: EUC-CPD which is equivalent to SML-CPD without the sparse metric learning step
(i.e. the norm ∥·∥w reduces to the Euclidean norm ∥·∥) and RBF-CPD which is a kernel-based
segmentation procedure that can detect general changes in the distribution of the samples [1]. The
chosen kernel is the radial basis function (RBF). Note that both SML-CPD and EUC-CPD are applied
on the time-frequency representation of the signal, while RBF-CPD is applied on the original data1.

Evaluation metrics. The detection power is evaluated with the accuracy which is the proportion
of correctly detected changes. For a given margin M > 0, a true change t is considered detected
if the estimated change-point t̂ is such that |t − t̂| < M . All scores are computed with a 5-fold
cross-validation.

Results A number of observations can be made from the results:

• Supervision improves detection accuracy. The cross-validated accuracy is shown on Figure 2-
a. The accuracy curve can be read like a ROC curve: here, SML-CPD has the highest curve
and outperforms other methods, meaning that supervision markedly improves the detection
at all margins. For a reasonable margin M = 1 s, accuracies are 91.1% for SML-CPD,
86.9% for EUC-CPD, 83.9% for RBF-CPD.

• Our method projects the signals into a low dimension space. The number of non-zero
coefficients in the learned w of SML-CPD is around 15 in the different folds of the cross-
validation, meaning that only 15 dimensions are kept to perform the segmentation, compared
to the 906 dimensions of the original STFT.

• SML-CPD provides useful insights on the segmentation. The learned weight vector ŵ in
SML-CPD helps the expert understand the important dimensions to segment their signals.
The distribution of the selected dimensions/frequency in the STFT is displayed on Figure 2-b
First, even though possible frequencies range from 0 Hz to 50 Hz, no frequency above 3
Hz was ever chosen. Second, for the accelerations, most frequencies are picked from the
[1 Hz - 2.5 Hz] band; this corresponds to the frequency of the main phenomenon during
the walk: the repetitions of footsteps. A footstep lasts about 0.8 second for healthy subjects
and less for neurological impaired patients (both are present in the Gait data set). Third, for
the angular velocities, most of the selected frequencies are below 0.5 Hz. This is consistent
with the behaviour of the signal during the turnaround: there is a relatively smooth peak in
the angular velocity (see Figure 1) which is visible at frequencies below 0.5 Hz.

4 Conclusion and future work
In this paper, we have presented a procedure to integrate expert’s annotations to improve change-point
detection algorithms, without resorting to a time-consuming calibration by trial and error. In addition,
the learned metric performs an informative dimension selection. In future works, we will tackle the
situation where the number of changes is unknown, by combining existing approaches [5, 10] with
our own. Also, more complex transformations of the signal could be considered, e.g. neural networks.

1We use the Python package “ruptures” [12] for the segmentation algorithms.
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