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Abstract: This article presents an overview of fifty-eight articles dedicated to the evaluation of physical
activity in free-living conditions using wearable motion sensors. This review provides a comprehensive
summary of the technical aspects linked to sensors (types, number, body positions, and technical
characteristics) as well as a deep discussion on the protocols implemented in free-living conditions
(environment, duration, instructions, activities, and annotation). Finally, it presents a description and
a comparison of the main algorithms and processing tools used for assessing physical activity from
raw signals.
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1. Introduction

Noncommunicable Diseases (NCDs), also known as chronic diseases, tend to be of long duration
and result from combined physiological, genetic, behaviors, and environmental factors. This group
of diseases, consisting of several conditions such as cardiovascular disorders, diabetes, certain types
of cancers, and chronic respiratory illnesses, kills 41 million people each year, equivalent to 71% of
all deaths globally [1]. Some behaviors such as physical inactivity, unhealthy diet, or overweight
increase the risk of NCDs. Insufficient Physical Activity (PA) itself is believed to cause 1.6 million
deaths annually, hence the growing need to monitor and to assess more closely physical behaviors.
Energy Expenditure (EE) estimation is often used as a way to assess the PA of a subject. To achieve this
level of detail and compute as precisely as possible, the EE activity classification enables the detection
of the exact types of activity that a subject is performing and associates it with an EE value [2].

Falls are also a major health issue to elderly people resulting often in hip fracture requiring
surgical operation and long rehabilitation. One-third of people over the age of 65 fall at least once
a year. In 2007, half of those over 80 fell at least once a year [3]. Among seniors, falls are a recurring
problem in clinical practice as they involve a loss of independence and mobility on top of causing
fractures and serious injuries. It is suggested that neuromuscular coordination, muscle strength
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steadiness of gait, postural stability, and the structural properties of bone all influence fall frequency [4].
This highlights once again the importance of being able to assess the level of PA of certain populations,
particularly in environments where their daily activities take place. Some studies are particularly
oriented towards the study of cohorts affected by pathologies impacting this PA such as neurological
diseases (Parkinson’s Disease (PD) [5] and multiple sclerosis), Chronic Obstructive Pulmonary Disease
(COPD) [6,7], or traumas such as strokes.

PA was traditionally assessed by questionnaires [8], but the limitations of this qualitative approach
needed to be addressed and notably through the use of more objective monitors. Portable inertial
sensors such as Inertial Measurement Units (IMUs), accelerometers, and gyroscopes are currently
one of the most widely used solutions for assessing the physical condition of a subject. These small
and inexpensive sensors enable an optimized assessment of gait characteristics [9–12]. They can be
used individually or combined to provide complementary information. In this article, we distinguish
three main types of sensors: accelerometers, gyroscopes, and IMUs. An accelerometer is a sensor
measuring the linear acceleration in one or several directions of space at a given point. These sensors
can be used to estimate the static position of the body [13] as well as to detect [14] and study certain
movements, particularly in open environments. Gyroscopes measure the angular velocities in one or
more directions of space at a given point [5,15,16]. The latter can be used to compute specific features
such as angles between different parts of the body [17,18] or Range of Motion (ROM) of the trunk to
assess the stability of a subject’s gait [19]. Finally, IMUs are portable systems integrating accelerometers,
gyroscopes, and magnetometers that allow the synchronized measurement of linear accelerations and
angular velocities in one single device. Moreover, in IMUs, thanks to the magnetometer that measures
the absolute magnetic field, all relative quantities (such as accelerations and angular velocities) can
be projected into an absolute analysis frame, which might convenient in several situations. All these
sensors may be 1D (thus measuring the quantities of interest in only one direction), but most of recent
studies rely on 3D sensors, in which the accelerations, angular velocities, and magnetic fields are
recorded in the three dimension of space.

The first uses of such sensors for physical observations were from the 1970s and the 1980s [20–23].
One conclusion from the “Measurement of Physical Activity” meeting conducted by the Cooper
Institute in 1999 was that the objective quantification from such sensors was not practical for large-scale,
was expensive, and that the acquired data was hard to manipulate or interpret [24]. Since then,
progress has increased the cost-effectiveness of these sensors as well as their ease of implementation.
These different types of sensors have since been widely used for PA estimation and gait analysis for
more than 30 years. The first works with such sensors were conducted in controlled settings [22]
and most of the following similar works were carried out under the same conditions. Several tasks
were performed in these laboratory settings such as activity classification [25], gait analysis [12,26],
or EE estimation [27,28]. One of the shortcomings of this type of environment is that it can cause
a Hawthorne effect to appear, which affects the performance of the participants as they are aware
throughout the measurements that their PA is being analyzed. Conducting the same analysis in freer
environments (or even in environments that are more usual for the subjects) can help to mitigate
the impact of this effect [29,30]. The first studies to be referenced as free-living studies using motion
sensors were assessing PA levels of specific cohorts [31,32]. Since these pioneer works, numerous
studies have used inertial sensors for the assessment of PA in free-living settings, introducing a wide
spectrum of experimental conditions. Those works which are performed in free-living settings had to
face various issues and challenges [33,34]. In 1999, a National Institute of Health Expert Panel raised
some concerns about the inability of studies performed at this period of time or prior to it to produce
reliable evaluations of PA because of, among other things, the difficulties in measuring PA in free-living
settings [35]. It has also been shown that motion sensors such as accelerometers could underestimate
EE compared to other existing methods at this time [36]. In addition, some studies have highlighted
the difficulties of transposing high-performance algorithms intended for controlled environments
to free-living conditions, in particular because of the greater complexity of movements and their
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associations [33]. Nevertheless, these challenges have been, and are still being, met today through
studies allowing interesting and reliable quantitative feedback using inertial sensors of the movements
carried out in free-living settings [37–40]. The increasing use of machine learning and efficient
algorithms also contributed to this effort, by allowing the processing of complex data and allowing to
transpose protocols from laboratory to natural conditions. Indeed, although some studies are focused
on Semi-Free-Living Environments (semi-FLEs) [15,41–43] where the conditions are controlled by the
experimenter, more and more research works are being dedicated to Free-Living Environments (FLEs)
which use the subjects’ natural environment [5,6,44].

In this context, the goal of our review is to identify and describe the uses of portable inertial
sensors in FLEs or semi-FLEs. It will also specifically include research work that includes phases
of movement, particularly walking. It aims at providing a selective yet complete overview on the topic,
by reviewing technical aspects linked to the used sensors, behavioral aspects such as protocols and
instructions and mathematical aspects with a description of the main features and algorithms used for
PA estimation. To that end, we propose to look back on the ten most recent years of research on these
themes from the early pioneer works to the recent deep learning approaches.

1.1. Existing Reviews

Several reviews have endeavored to identify the various studies using motion sensors to
analyze the PA of subjects, taking into account at least partially if not exclusively works carried
out under free-living conditions. Gorman et al. [45] have detailed several methods of EE assessment
in free-living settings. De Bruin et al. [46], Byrom and Rowe [47] (COPD patients), Tedesco et al. [48],
Murphy [49], de Oliveira Gondim et al. [50], and Frechette et al. [51] considered the use of wearable
systems (accelerometers or other motion sensors) to monitor activities in specifically targeted cohorts
(PD, Multiple Sclerosis (MS)). Vienne et al. [19], Yang and Hsu [52], and Tedesco et al. [48] also focused
on the use of wearable sensors in clinical settings, but considered any kind of cohort. Attal et al. [53]
and Narayanan et al. [54] analyzed articles related to activity classification algorithms and classifiers.
Schwickert et al. [55] and Henriksen et al. [56] focused on other kinds of studies (studies based on fall
detection and studies using one specific brand of sensors, respectively).

Table 1 summarizes all reviews that have addressed some of the pivotal topics of this paper
(motion sensors, free-living settings, etc.). It specifies whether the referenced review articles have
addressed the three main aspects detailed in this review: sensors, protocols, and algorithms. It is
noteworthy that, according to Table 1, the majority of the reviews selected for this section generally
includes articles explaining the various aspects of sensor implementation in a detailed manner,
whereas they tend to be less detailed regarding the implementation of protocols (instructions,
measurement durations, etc.).
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Table 1. Comparison of our review to other existing reviews dealing with the use of wearable
motion sensors in free-living settings. 1→ De Bruin et al. [46] (2008), 2→Murphy [49] (2009), 3→
Yang and Hsu [52] (2010), 4→ Schwickert et al. [55] (2013), 5→Gorman et al. [45] (2014), 6→Attal et al.
[53] (2015), 7→ Byrom and Rowe [47] (2016), 8→ Tedesco et al. [48] (2008), 9→ Tedesco et al. [48],
10 → Wang et al. [57] (2017), 11 → Narayanan et al. [54] (2019), 12 → Henriksen et al. [56] (2020),
13→ Frechette et al. [51] (2019),14→ de Oliveira Gondim et al. [50] (2020), 15→ This Review.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Specific Factors

Focused on
FLE/Semi-FLE

√ √ √ √ √

Considering all
cohorts Elders

√ √ √ √ √
COPD Elders

√
Elders

√ √
MS PD

√

Sensors

Types of Sensors
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Number of Sensors
√ √ √ √ √ √ √

Placements
√ √ √ √ √ √ √ √ √ √ √ √ √ √

Technical
Characteristics

√ √ √ √ √

Additional Sensors
√ √ √

Protocols

Instructions’ Details
√ √

Measurement’s
Durations

√ √ √ √ √

Annotations
√ √ √ √

Algorithms
Features

√ √ √ √ √ √ √ √

Classifiers
√ √ √ √ √

1.2. Scope and Limitations of This Review

This review aims to give a complete overview of studies concerning PA assessment using inertial
motion sensors in FLEs or semi-FLEs. Besides, this article intends to focus on assessments that include
motion phases from the lower limbs such as walking, although there are very few studies that do not
include such movement phases. In addition, a section entirely devoted to protocols was put in place in
order to detail what is currently conducted in the field.

This review only includes articles related the assessment of PA of participants in free-living settings
and will not address locomotive tests classically used in controlled conditions (such as the 6 MWT,
10 m test, etc.) or any other test that can be only performed in controlled settings. Although a significant
part of the articles concern pathologies, an in-depth study of the differences between pathologies will
not be carried out. In addition, we endeavor to detail the acquisition modes employing a specific
type of sensor: inertial motion sensors (gyroscopes, accelerometers, and IMUs). Articles focusing
mainly on other types of sensors such as GPS, pressure sensors, or heart rate sensors are not included,
which therefore constitutes a limitation to our study. In addition, this review does not perform
a complete analysis of all research detailing activity classification processes. Indeed, the willingness to
focus on papers that include the use of inertial sensors as well as papers based on open environments
does not allow for such a thorough review. Besides, no conditions other than free-living conditions are
under consideration in this study, which again deliberately limits the scope of this review. Finally, it is
to be noted that Google Scholar articles whose duplicates were not found in the PubMed library were
not included in this review (further details are provided in Section 1.3).

1.3. Methodology

This scoping selective review has been conducted by searching MEDLINE via PubMed and
Cochrane electronic databases to identify articles published from 1 January 2010 to 21 April 2020
whose methods were including the use of wearable sensors such as IMUs, accelerometers, or
gyroscopes in order to perform an analysis on participants gait and PA in FLEs. Articles that were
not directly exploiting output data from these sensors, or that were not performing their protocols
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in FLEs or at least in semi-FLEs were excluded from the review. According to the scope detailed
in Section 1.2, the following terms were looked after in titles, keywords, abstracts: (((‘’IMU” or
‘’accelerometer” or ‘’gyroscope” or ‘’inertial sensor”) and (‘’free-living” or ‘’outpatient” or ‘’real life” or
‘’out-of-laboratory”)) and (‘’walk” or ‘’gait”).

This selective review was conducted by using Preferred Reporting Items for Systematic Review
and Meta-Analyses PRISMA guidelines to select articles as detailed in Figure 1. Potentially eligible
studies were screened individually by three authors (MM, SJ, and LO) on the basis of abstract and title
for FLEs and wearable sensors criterion and of the full text for others criterion. In total, 58 articles
meeting the search criteria detailed above were finally selected for this review. This work had first
been focusing on the Google Scholar library before it was noticed that the vast majority of the articles
that were being selected were duplicated in the PUBMED library (most of studies based on activity
classification had clinical objectives: activity observation, physical activity evaluation, etc.). This is why
it has been decided to only mention the Pubmed library in the PRISMA Flow Chart since google scholar
library is not specifically specified on this PRISMA model in other studies from the literature [58,59].

1.4. Organization of the Paper

The paper is organized as follows. Section 2 provides a first rough classification of the 58
selected articles by describing the reported aims of the studies. Section 3 provides an investigation
on the sensors, by detailing the type, number, and placement used in the studies, as well as some
technical considerations. Section 4 gives a thorough description of the protocols used in FLEs including
instructions, activities, inclusion criteria, etc. Section 5 is related to the algorithms and features used
for activity classification and PA assessment. Finally, Section 6 provides a discussion on the current
challenges and open questions in this research field.

1.5. Results of Screening

As a conclusion, 58 articles were kept for a further analysis. The selection process put in place in
regards to the PRISMA flowchart is detailed in Figure 1.
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198 of records after
duplicates removed

198 of records screened

152 of full-text articles
accessed for eligbility

58 of studies included
in qualitative synthesis

46 of records excluded

19 articles that do not entirely
focus their analysis on

inertial motion sensors such
as IMUs or accelerometers

14 articles that do not
sufficiently dwell upon

free-living environments
13 articles that focus on

activities that do not require
movement from lower limbs.
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database searching
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Figure 1. PRISMA flow chart illustrating the selection process resulting in a list of 58 studies.

2. Aims of the Studies

In this review, 58 studies linked to the use of IMUs in the context of FLEs were included. However,
these studies have various objectives, which range from clinical research to the testing of advanced
machine learning algorithms. Out of the 58 articles, six main categories are put in place and are
detailed in Figure 2. These categories are obviously subjective and it is to be noted that some of the
reviewed studies can have different purposes and thus belong to several categories.

The first main category gathers articles that intend to test a new activity classification method
by developing an algorithm and/or a measurement device specific to their work [60,61]. Authors of
these studies set up algorithms that allow, from previous annotated observations of participants
performing activities (labeled training data), to determine which type of activity is performed during
an analysis of a signal section (see Section 5 for more details on machine learning procedures for activity
classification). Some of these studies point towards the study of machine learning systems [62–64],
while others focus on other factors such as sensor implementation [65]. This is the group of aims that
contains the greatest number of studies (28 papers).

Studies dedicated to clinical research use IMUs as a quantification tool for the study of specific
cohorts [66–68] and constitute the second category (24 studies). Some of those clinical studies aim



Sensors 2020, 20, 5625 7 of 33

at quantifying patient’s pathology [6,7,27,69,70], while others quantify the therapeutic effect on the
patient’s condition [5,68]. Some clinical trials focus on healthy participants, some compare the patients
included with healthy participants [39,42,71,72], while others dwell specifically upon cohorts with
a medical condition. Perriot et al. [7] intended to improve posture detection in COPD participants and
Nguyen et al. [63] focused on activity classification in patients with PD. In such work, the aim is either
to compare the results obtained on certain patients with specific pathologies to control patients or to
evaluate the impact that changes in instrumentation (position of sensors, etc.) can have on the results
observed in participants with pathologies.

The third group (18 studies) includes works focusing on the analysis of the different characteristics
of implanted portable sensors (feasibility, placements, and comparisons between types of sensors or
between sensors’ locations) [15,44,73–76]. Ellis et al. [17] compared the results of activity classification
depending on the placement of the used sensors (hip or wrist) for instance.

The fourth group of works is dedicated to the evaluation of EE-related features
(14 studies) [6,7,17,27,38,66,69]. Some of these studies intend to detect the amount of time spent
in activities that require a greater or lesser expenditure of energy when carried out (sedentary activities
for instance that is to say activities with a Metabolic Equivalent of Task (MET) is below 1.5. MET is the
objective measure of the rate a participant expends energy depending on their mass).

Finally, papers comparing the conditions and results in free-living conditions with those obtained
in controlled environments [40,72,74,77,78] and papers dealing with the detection of ancillary
parameters (such as wear-time [79,80], walking bouts [72,75,81], strides or steps [40,71,81], etc.)
constitute the fifth and sixth distinct groups of respectively 10 studies and five studies. Wear-time
corresponds to the time a participant wears the sensors that he/she was provided with before the
recording of his activities. Walking bouts are walking segments that are stationary.

0 4 8 12 16 20 24 28

Compare Labs’ and free-living acquisitions

Detection of various ancillary parameters : Wear-Time/Strides

Energy Expenditure Related Studies

Sensors Oriented Objectives : Feasibility/Locations/Comparisons

Various Clinical Purposes

Testing new classification methods

Number of Studies

A
im

s

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 2. Change of the distribution of studies according to their aims over time.

3. Sensors

In this section, we will answer the first question raised by this review: What are the characteristics
in terms of sensors configurations of the main methods for the study of PA in FLEs? Types, numbers,
placements of sensors, their technical characteristics, as well as additional sensors’ details will be
screened in this section.

3.1. Type of Sensors

All studies included in this review use accelerometers, gyroscope, IMUs [39,40,82], or
an association of these three types of sensors. A referencing of the inertial sensors’ types among
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the 58 studies considered in the review is available in Figure 3. The devices’ brands for sensors that are
used more than in one study are shown in Table 2.

It appears from Figure 3 that the two types of the inertial sensor most used for free-living
applications are accelerometers (in particular the Actigraph accelerometers—see Table 2) and IMUs:
45% of accelerometers and 27.5% of IMUs. On the other hand, gyroscopes are rarely used individually
(6.6% of the studies). Table 2 also shows that the devices used have storage and battery capacities
that are quite similar and important compared to XSens, for example, which are often used for gait
and locomotion analysis in controlled environments [26]. For the sake of comparison, the Shimmers,
which are the most used IMUs in the reviewed studies, have 8 GB of internal storage and between
39 h and 69 h of battery autonomy, the Actigraph GT3Xs have an autonomy of 25 d and a 4 GB intern
storage capacity, and the XSens (a popular sensor often used in controlled settings) have a maximum
autonomy of 8 h and have no internal storage. Some recent studies use smartphones to retrieve details
of the same parameters measured by the other types of motion sensors mentioned above. Three of
these studies are included in this review [5,67,83].

Table 2. Details of used inertial sensors. dps: degrees per second.

Device Names Type of Sensors Battery Life Storage Nb of
Studies

Accelerometer
Range

gyroscope
Range

Sampling
Frequency

Actigraph
(*: GT3X) Accelerometers 25 days 4 GB 14 ±8 g NC 30–100 HZ

Shimmer
(*: Shimmer3) IMUs 39–69 hrs 8 GB 7 ±2 g (to

±16 g)
±250 dps (to
±2000 dps) 512 Hz

ActivPal (*) Accelerometers 10+ Days NC 5 ±2 g NC 20 Hz

Physilog GaitUp
(*Physilog 4) IMUs 23 hrs 8 GB 3 ±2 g (to

±16 g)
±250 dps (to
±2000 dps) 1–500 Hz

AX3 Accelerometers 14 days at
100 Hz 512 MB 3 ±2 g (to

±16 g) NC 12.5–3000 Hz

GENEActiv Accelerometers 30 Days 0.5 GB 3 ±8 g NC 10–100 Hz

IGS-180 Suit
(Xsens) IMUs 6 hrs None 3 ±16 g ±2000 dps 100 Hz

Dynaport (*
MoveMonitor) Accelerometers 14 Days 1 GB 2 ±2 g (to

±8 g) NC 50–200 Hz

Sensewear Accelerometers 14 days 20 days 2 ±2 g NC 50–60 Hz

Hookie AM20 Accelerometers NC NC 2 ±16 g NC 100 Hz

Actiwatch
(Actiwatch 2) Accelerometers 30 Days 1 MB 2 ±0.5−±2 g NC 32 Hz

Actical Accelerometers 194 days 32 MB 2 ±0.025−±2 g NC 32 Hz

Empatica E4 Accelerometers 1–2 Days 60+ hrs 2 ±2 g (to
±8 g) NC 32 Hz
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Accelerometer

45.0%

IMU

27.5%

gyroscope

6.6%
Others

11.0%GPS

5.5%
HeartRate Monitors

4.4%

Figure 3. Proportions of the use of each kind of sensor in Free-Living Environments (FLEs) and
Semi-Free-Living Environments (semi-FLEs).

3.2. Number of Sensors

In several articles, protocols include the use of several sensors positioned on different locations
on the body [40,44,62]. Figure 4 details the distribution of the studies according to the number
of inertial sensors associated with them [17,38,62,66,73,78,80,84,85]. It shows that the majority of
studies in FLEs or semi FLEs—even when using several IMUs, accelerometers, or gyroscopes—limit
the number of the latter. Of all studies using more than one sensor, 67% use four or less
sensors. [27,28,54,61,65,74,86]). Moreover, only three studies use more than ten IMUs—these studies use
the IGS-180 suit consisting of seventeen IMUs [18,63,70]. Besides, 41% of the studies use only one sensor
for all of their acquisitions [39,64,72,79]. This rather low number of sensors used in FLEs/semi-FLEs
studies may appear surprising as the cost of inertial sensors has decreased and their dimensions have
reduced in the last ten years (as detailed in Section 1). Yet, this could be explained by the fact that
reducing the bulkiness due to inertial sensors is helpful in FLEs. With such a reduction, wearing
sensors is less likely to serve as a reminder that a measurement is being taken. Thus, it avoids
a potential appearance of Hawthorne syndromes [29]. This syndrome affects measurements in
a clinical/controlled environment and reduces the spontaneous nature of certain movements observed
during these measurements. In particular, although the figures do not allow for a definite conclusion,
it seems that the higher the degree of freedom of the environment is, the lower the number of used
sensors is. A reasonable explanation is that a too important bulkiness in complete FLEs paradigm is
more complicated to manage (installation, charging of the sensors, etc.).
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Figure 4. Distribution of studies according to the number of sensors associated with them: distinction
between FLEs studies and semi-FLEs studies.
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3.3. Sensors Placement

The locations of the sensors is also important as it conditions the types of results that can be
obtained in a study. A mapping of the major placements for inertial sensors is available in Figure 5.

It appears that the sensor placements in FLEs are globally homogeneous, including both lower and
upper body parts. A clear trend does not emerge even if the wrist position seems to be predominant
(twenty-four percent of the studies use this location [64,69,79,83,87–90]). Several inertial sensors are
sensors implanted on a watch (ActiWatch, GENEActiv, etc.), thus this high proportion of sensors
placed on this location. In addition to this, it is reported in one study [73] that the participants tend to
prefer this configuration since sensors are more comfortable and less cumbersome to wear on the wrist.
However, it is important to notice that another study [91] has shown that 15.6% of their participants
who wore accelerometers on the wrist violated the protocol for one or more days. Sensors were worn
on the wrong hand during 6.9% of the days and during the periods of discrepancies, the daily PA
was miscalculated by more than 20%. It therefore appear that behind the expected sensor locations,
the correct placement of the device also has a significant effect on the results. It seems that very few
studies conducted in open environments use portable sensors attached to the feet of participants.
This can be explained by the fact that in unsupervised conditions, the use of a sensor on this location
can present a detrimental congestion for the smooth running of the activities to be performed by the
observed subject. These results clearly demonstrate the constraints and compromises that any protocol
in FLEs relies on: getting the cleanest signals while still achieving a good acceptability.

3.4. Technical Characteristics

As displayed in Table 2, sensors used in FLEs can be chosen according to several technical characteristics
such as storage, battery life, or range of measurements. One of these important characteristics is the sampling
frequency. This parameter influences both the level of precision of the processing and some practical
considerations such as storage, size, or energy consumption. It is therefore important to locate and identify
possible trends on the chosen value of this parameter according to the type of study and its associated
objectives. The evaluation of daily PA by IMUs requires the selection of an adequate sampling frequency.
The choice of this frequency must be based on the acceleration power of the human movement in order
to be able to acquire all the data relating to it. In 1997, Bouten et al. [92] studied the acceleration power of
human motion by distinguishing the upper body parts from the lower body parts. It was observed that the
acceleration power in the upper body varies from 0.5 to 5 Hz. In the lower body, the heel strike can however
produce acceleration frequencies up to 60 Hz. Knowing that, and depending on the sensors locations,
sampling frequencies ranging from 10 Hz [74,93] to more than 200 Hz [88,94] have been used in the literature.
As can be seen in Figure 6, there is large variety of sampling frequencies used articles. In several articles,
the choice of the sampling frequencies is justified by considerations similar to those of Bouten et al. [92],
and it is accepted in several publications that a sampling frequency greater than 20 Hz is an acceptable choice
to capture most every day activities [16,60,83]. Indeed, according to Karantonis et al. [95], Bianchi et al. [96],
and Khusainov et al. [97], all human body movements are within the range of 0 to 20 Hz, hence the
importance of having sensors with sampling frequencies at least above 40 Hz (Nyquist criterion).
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Figure 5. Sensors (IMUs, Accelerometers, gyroscopes, and other kind of sensors: GPS and Heart Rate
Monitors) placements. Each circle displayed on the graph shows the proportion of use of the location
associated with it (its radius is matched with the number of times that location is used in relation to
the total number of locations used). Within these circles, another light-colored circle may be displayed
which represents the proportion of the number of times the sensors placed on the location of the circle
are placed on both sides of the participant. The remaining dark part represents the proportion of the
number of times the sensors placed on the same location are placed on only one side of the participant.
The numbers within each of the dark and light parts of the circles indicate the precise number of times
each of these specific situations occur. The average position of the other sensors (GPS and HeartRate
Monitors) are also indicated by crosses.

10 Hz
7.2%

[20–50 Hz]

32.0%
[60–80 Hz]

13.0%

[100–128 Hz]

18.8%

>200 Hz

7.2%Not specified

21.8%

Figure 6. Distribution of sampling frequency among all articles. Note that three articles use sampling
rates increasing from 10 Hz to 200 Hz in 10 Hz increments. They are thus counted in each corresponding
slice of the pie chart.
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3.5. Additional Sensors

Although our review is not focused on non-inertial sensors, we can mention that several studies use
inertial sensors associated with an additional sensor such as a GPS or a Heart Rate Monitor [6,43]. Some of
them heavily rely on these sensors (GPS for instance) [41,43,68,98–100]. As far as GPS are concerned,
their uses enable trajectory reconstruction [68,98–100] hence their usefulness in some cases (to correlate
the data measured by the inertial sensors with the mapping of the movement of the participants in
their environment). Tedesco et al. [48] review identifies certain types of GPS sensors that can be found
in studies tracking activity but mixing up free environments (semi-FLEs and FLEs) with controlled
environments. GPS tracking is sometimes used in studies in order to visualise the walking bouts or
walking habits of participants. Nevertheless, it is necessary to remember that the accuracy of GPS is greatly
degraded indoors, hence the almost unique use of these sensors in outdoor environments. Moreover,
GPS do not provide valid data for vertical position. In some cases, GPS can also act as a good reference to
correct the absolute positions of inertial sensors during horizontal movement phases. Indeed, they can
be used to correct the drift errors of an algorithm named pedestrian dead-reckoning (with a Kalman
smoother filter) intended to reconstruct the trajectory of participants and thus to be able to look for
stationary walking phases [81].

3.6. Impact of the Sensors’ Set-Up

It should be noted that the variation that can be seen in the types of sensors used, their numbers,
their placement on the participants, as well as their technical characteristics is quite marked. This variation
may imply differences in signal retrievals, in their processing, and therefore in the accuracy of the activity
classification calculation which is detailed in the Section 5. Indeed, several articles detail in particular the
impact of different types of sensors by comparing, for example, different models of accelerometers used
within the same protocols and on the same locations [44,74]. Comparisons can be made on the accuracy
of the calculation of certain features or on the accuracy of activity classification. Furthermore, based on
the analysis of these same types of results, some studies have highlighted the impact of differences in
motion sensors’ placements on the retrieval and the use of data [17]. Besides, depending on the way the
sensors are set up, different features can be computed. For instance, one acquisition performed with one
sensor located on the lower back will not enable the same features’ retrieval than one acquisition with
a sensor placed on the wrist. Researchers also have shown that sensor positioning errors could lead to
variations (displacement within a body part due to insufficiently reinforced sensor mounting for instance).
These variations can lead to a loss of orientation information that significantly affect the raw data [101].
Corrections (such as the use of orientation-robust features) to avoid these changes can be implemented
when designing the measurement setup.

4. Protocols

In this section, we aim at providing insights on the different protocols used in the studies.
Instructions to perform activities, activities’ and environments’ details, as well as inclusion criteria and
annotations’ trends will be presented.

4.1. Instructions and Distinction between FLEs and Semi-FLEs Studies

As previously mentioned, one difficulty in the analysis of human movement is to achieve a balance
in the experimental conditions. Indeed, although the goal is to record a movement as natural as possible,
studies also aim at reaching the greatest possible accuracy. This forms a gradient of experimental
condition more or less “natural” to which each experimenter will set the parameters. In the introduction
in Section 1 of this review, we defined FLEs as environments that are not controlled by the experimenter.
The participant thus has no indication of the environment and complete freedom of movement.
On the opposite, we consider environments established by research teams as semi-FLEs. It includes
laboratory, indoors or outdoors space, even replica of apartments. As will be seen in this section,
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it should be noted that these definitions are strictly based on the environment, but that there is also
a gradient of freedom in the activities according to the instructions given.

4.1.1. Instructions

Communicating the protocol to participants influences the way they perform the activities.
The ideal protocol does not exist. For each protocol it is necessary to be consistent with the walking
variable to be measured and the environmental conditions. Sustakoski et al. [102] observe through
various protocols on the same participants a difference in walking speed according to the protocols.
Overall, the paper prompts discussion on the notion that slight changes, such as walking on
a computerize walkway or on the ground, can influence walking speed. Rehman et al. [103] compare
the impact of walking protocols and gait assessment systems on patients with Parkinson’s disease,
and underline the impact of the protocol on the activities performed. They observe at the level of
two different walking protocols a difference in the participants’ performance (pace, rhythm, variability,
and asymmetry). Thus, the format in which instructions are communicated is an important parameter
in the protocol. In the literature, different types of instructions are observed, which leave more or
less freedom of interpretation as we can see in Figure 7. There is a continuum of situations between
semi-FLEs studies that still include precise instructions in the way of laboratory settings and FLEs
studies where the subjects are completely free.

One type of instruction regularly found in semi-FLEs [5,16,60,71,76,78,82,85,89,104,105] is
the presentation of the activities to be performed: how to perform them and for how long.
These instructions are classified as “Imposed activities with specific instructions”. In this case,
the participants have rigorous instructions and therefore no freedom of interpretation and completion
of the activities. Other ways of instruction often found in semi-FLEs [66,67,88,106] are “Imposed
activities without any instructions”. The participant is told which activities to perform but there is
no precision on how to perform them. This protocol allows more freedom as to how perform the
activities which makes them more natural. A third mean used in articles is the suggestion of activities.
Indeed, some activities are suggested to the participants but without any additional instructions
on how to perform them. In addition, the configuration of the environment itself can contribute
to the suggestion (letting a pen on the floor which will imply that the participant leans forward to
pick it up [18,40,43,63,77,93,99,107]). In this case, we are getting closer to a FLEs situation where
the participant has complete freedom when performing activities. The last case observed mostly in
FLEs situations is “complete freedom”. Participants are thus equipped with one or more IMUs and
continue their daily and usual activities at home (including going to work, hobbies, and home activities)
without any instruction or suggestion [6,6,7,17,27,38,39,44,60,69,72–75,80,89,91,100,104]. In the latter
case, the participant is in the most natural conditions possible (both environment and activity). It is
also noteworthy that a major aspect of the instructions are sometimes modified according to the studies:
the exceptions in which the sensors must be removed (shower [80], sleep [100], etc.) according to the
experts who set up the measurement protocols. This modification of the wear-time (which is, moreover,
a parameter measured as precisely as possible by certain research teams) has a direct impact on the
total recording time on a typical day. Participants from one study were even asked to remove their
sensors whenever they felt skin irritation around the latter [65]. It should be noted that these requests
for sensor removal may exist even when the instructions on the activities to be carried out are free:
these two aspects are distinct.
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Imposed Activities with specific Instructions

Imposed activities without any instructions

Suggested activities

Complete Freedom in FLEs

Nguyen et al. [63]

Brodie et al. [77]

Pavey et al. [78]

Zhang et al. [76]

Ahmadi et al. [66]

Del Rosario et al. [67]

Doherty et al. [75]

Del Din et al. [72]

Figure 7. Frieze detailing the different types of instruction given to participants during FLEs and
semi-FLEs studies. Citations colored in red are citations of semi-FLEs studies. Citations colored in blue are
citations of FLEs studies.

4.1.2. Environments

In addition to the instructions, the environments also play a part in the definition of
FLEs/semi-FLEs conditions. The repartition of the studies included in this review according to
these categories is displayed on Figure 8. It appears that the majority of the reviewed acquisitions are
performed in FLEs (among the 67 reviewed acquisitions, 56.8% are in FLEs and 43.2% are in semi-FLEs).
Acquisitions are specific recordings and several acquisitions can be put in place in one study. It may
also be noticed that several studies include both FLEs and semi-FLEs acquisitions (15.5% of the
reviewed studies).

Within FLEs studies, a distinction is made between certain papers depending on participants’
environment. Indeed, there are two types of environments: those that are familiar to the subject and
those that are unfamiliar. Concerning articles using familiar environments, some studies in FLEs are
limited to the habitats of the participants [6,17,27,37,38,41,69,72,73,79,80,83,84,91]. While others include
all the environments frequented daily by the participant like library, gym, university, etc. [38,85].

As for semi-FLEs studies, they can be divided into two categories: indoor and outdoor studies.
Indoor movements can be carried out on conveyor belts, on a 10 m path (or another defined distance)
previously traced in a controlled environment (laboratory). Some studies are semi FLEs but take
place in a reconstruction of an appartement: these environnements are simulated FLEs [18,43,70,106].
Others take place inside the laboratory, in infrastructures next to it, or both to be able to perform
some activities: inside university campus [16,82] for instance. In those studies, participants are asked
to perform a course that includes several activities that can not be performed only in a laboratory.
Some studies imply indoor and outdoor parts [81].

It is noteworthy that most FLEs studies include a controlled or semi-controlled environment section.
It would seem that FLEs studies do not substitute for other experimental conditions, but provide access
to other data that complement those obtained under semi-controlled conditions. The semi-FLEs FLEs
and controlled conditions thus appear to be complementing each other to provide the most complete
study of human activity. Figure 9 displays a detailed list of the environmental categories used in FLE
and semi-FLEs studies. This figure also shows the number of times the measures are implemented in
these types of environments. It can be seen that most of the protocols are implemented in environments
familiar to the participants (homes, offices, etc.) but that some other arrangements are possible and
quite frequently encountered (hospitals, rehabilitation centers, etc.).
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Figure 8. Number of studies focusing on Free-Living Environments (FLEs), semi-Free-Living
Environments (Semi-FLEs), or both of them. The proportion of FLEs studies performed in Familiar,
Unfamiliar, or both types of environments and the proportion of semi-FLEs studies performed
in outdoor, indoor, or both types of locations are also detailed.
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Figure 9. Details of the used Environments.

4.2. Activities

In this section, the different activities used for the study of PA in free-living settings are presented.
This section is organized in two parts: the first one being dedicated to full FLEs and the second one to
semi-FLEs Figure 10 shows the distribution of the studied activities for both FLEs and semi-FLEs.

It appears that out of the eighty-two activities in FLEs, three activities are often analyzed: standing,
sitting, and walking. Several articles simultaneously study these three activities [7,17,37,67,94].
The participants of these studies had to perform all of these three behaviors. A second slice of
activities also seems to emerge and is composed of the following movements; running [17,78,93],
lying down [54,62,67,94], going up and down a staircase [65,90]. It is notable that several studies are
interested in the detection of postural transitions (sit-to-stand, stand-to-lie, etc.) [67,78].

Semi-FLEs enable a better control of performed activities and allow for more accurate annotations
of these activities. It may result in an optimized computation of classifiers’ accuracies. As seen
on Figure 10, the same initial conclusions as for the FLEs studies can be drawn here. The majority
of the activities measured are standing, sitting, or walking, with a slight increase in the percentage
of studies analyzing walking and running. Some new activities to be detected are also referenced
in the semi-FLEs studies: turning and reaching [70]. semi-FLEs studies focused more on household
activities [76,88] which are simpler to put in place and to annotate in such an environment. Besides,
outdoor activities such as vehicle travels are less frequent (two semi-FLEs [93] vs. four FLEs [17,100]),
probably because they are more difficult to set-up in this kind of environment.
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Figure 10. Details of the distribution of the studied activity types into FLEs and semi-FLEs.
Total Number of Activities performed an studied in FLEs = 84. Total Number of Activities performed
and studied in Semi-FLEs = 96.

It should be noted that some studies tried to detect groups of activities (sedentary activities [38,62,75],
stationary activities [78,86,93], etc.) which included several specific activities (standing, sitting, lying
down for the group of so-called stationary activities, etc.).

4.3. Measurements’ Durations

Durations of recordings are also an important characteristic of the studies. Figure 11 displays
the distribution of measurements’ durations for both FLEs and semi-FLEs studies. Strong differences
between the two experimental conditions can clearly be observed.

FLEs studies mostly considered durations greater than 3 days. Indeed, of the 36 durations listed
(one duration is not available in one article), 26% of the studies measure participants over seven days
or more [17,65,84] and 73% percent of the studies measure subjects over three days or more [40,75,80].
This corresponds to the recurrent objectives in FLEs studies: to study extensive databases mimicking
the phases of participants’ activities as closely as possible. These long studies allow to observe
movements as spontaneous as possible, which is the interest of free-living studies. As confirmation of
this point, it appears that there are only 8 articles that study the mobility of their subjects over less
than one day.

It appears that the vast majority of registrations in semi-FLEs’ studies are completed in less than one
day (85%). This is consistent with the fact that in semi-FLEs, deconstruction of motion phases is more
easily feasible since the environment is controlled. A clear separation between the studies in semi-FLEs
is observed around one parameter: the continuity or not in the measurements made. In fact, some
research groups measure all movements by having them all performed in one single record [15,76,88,99],
while other teams measure movements one after the other with a separation between each [42,77,106].
It is notable that there are more studies that evaluate their subjects continuously than non-continuously:
17 vs. 10. This corresponds to the desire of these studies to work on databases specific to the field of
Free-Living (long and extensive). Besides, semi-FLEs studies tend to record their participants on short
periods (17 semi-FLEs studies record less than 30 min). It adds up to the control such studies already
have by constraining the space in which subjects perform activities. It should also be noted that there is
a significant number of studies (five) that measure their participants over several days though [62,64].
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4.4. Inclusion and Exclusion Criteria

One of the advantages of ambulatories study is that they allow longitudinal follow-up of participants
varying from a few hours to several days. It is particularly interesting for studying pathological patients
without being limited to a one-off test of a few minutes during the hospital visit. This explains why a large
proportion of pathological case studies are conducted in FLEs [6,7,17,27,28,39,69,79,84,89]. The definition
of the inclusion and exclusion criteria determines the part of the population targeted by the study and
therefore the precision of the study. Participants’ characteristics can sometimes affect their motor skills
(taking medication that mimics the symptoms of another disease, co-morbidity of pathologies, etc.), hence
the importance to describe the latter. Those characteristics (healthy or with specific diseases) are described
in Figure 12 and further detailed in Figure 13.

Figure 12. Distribution of studies according to participants state of health of participants. In shades
of blue are represented the proportion of studies with non-ill participants (in light blue those with
young participants, in intermediate blue those with elderly participants). The proportion of studies
with ill participants is shown in shades of red. A distinction is made between neurological (dark red)
and non-neurological (light red) diseases.

In studies including only healthy participants (the majority of studies in this review) age is
a recurring inclusion or exclusion criteria. Some studies focused on elderly populations, aged 65
and over [15,18,41,67,77,87,98,104]. Others focused on younger cohorts, with participants between
adolescence and under 30 years of age [38,43,73,74,78,80,93,100]. The remaining studies used the age,
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gender, and BMI of the participants as a criteria [62,65,76,88,99], or only the average age of the included
participants [16,54,60,108]. One study in particular took only the best survivors [85].

In the group of studies focusing on patients, a substantial part of studies focus on
neurological pathologies like PD [5,63,70–72,82], cerebral palsy [40,66], accidental brain injuries
like strokes [83,89,89,90,90], and traumatic brain injuries [39]. There is also a significant part of
non-neurologic pathologies such as COPD [6,7,27,69] and obesity [17] where locomotion is also affected.
All these pathologies have in common locomotion as biomarker which makes it a coherent choice.

For all the above-mentioned studies, a mandatory inclusion criterion is the official diagnosis
of the disease under study [5,17,27,39,40,63,71,72,82,84,89,90]. Disease scaling questionnaires are
sometimes necessary to include patients in the study like Parkinson pathology severity degree
Hoehn and Yahr scale [5,70–72,82]. Functional tests can also be used as inclusion criteria as found
in the studies with COPD participants for instance for whom a functional lung test is necessary as
a diagnostic [6,7,27,28,69]. A recurring exclusion criterion is the co-morbidity of the studied pathology
with another pathology that might have the same motor symptoms [39,72] and treatment that could
also interfere with motor symptoms [72].

Finally, some inclusion and exclusion criteria are common to both study groups. Whether participants
are pathological or not, general health information such as Body Mass Index are collected [40,43,76,99].
Furthermore, in all studies, physical (orthopedic or muscular) and cognitive impairments often are
exclusion criteria [18,38,40,44,65,72] which are detected by questionnaires: Montreal Cognitive Assessment
(MOCA) [70,72], Mini Mental State Exam (MMSE) [5,72], and the Geriatric Depression Scale (GDS) [41,72]
for mental state. It is thus notable that the inclusion and exclusion criteria are grouped around age,
health and BMI. These three characteristics allow a precise selection of participants and therefore of
the study.

Participant Characteristics Nb of Studies

Healthy participant
No age specification 18

Elderly participant (>65 years old) 8
Youth participant (<30 years old) 6

Pathological participant
Parkinson Disease 7

Traumatic Brain Injuria, Stroke, Hemiparetic patients 6
Chronic Obstructive Pulmonary Disease 5

Cancer 2
Cerebral Palsy 2

Obesity 1
Multiple pathologies 1

No participant information 2

Figure 13. Detail of the number of studies according to the characteristics of included participants.
Studies containing healthy participants are divided into three categories.

4.5. Annotations and Meta-Data

The analysis of the referenced articles shows that the “annotation of activities” aspect is essential in
several studies, in particular to provide verification data and compute accuracy values for the classifiers
used to classify activities. Sensors such as cameras, audio recorders, GPS, force plates, etc. can be used
to annotate the timings of activities and compare them with those detected by the classifiers chosen by
the investigators. The annotations are not only chosen to give an accuracy score for activity detection,
but also sometimes to evaluate the number of Moderate Vigorous Physical Activities (MVPA): high
energy level activities [73–75]. The annotations allow to evaluate the number of movements performed
with a specific score of MET [27,28,38].
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As far as cameras are concerned, one study investigated how both inertial and vision sensors
can simultaneously be used to enable human activity classification [109]. According to Figure 14,
the most common devices for annotation are video cameras that have been widely used
in FLEs [37,38,41,67,75,77,93,104] and semi-FLEs [16,82,106,110]).

Instead of additional sensors, some studies used direct manual annotations by
experimenters [5,40,44,63,70,76,88–90,105,107]. Of course, those types of annotations are only
relevant in studies that take place in laboratories (semi-FLEs). In FLEs, participants have to take notes
into a diary that is given back to the experimenters at the end of the protocol or when the subjects take
off the device [5,7,71,80,100,108]. In specific studies focused on the evaluation of EE, ground truth
annotations can be provided by additional clinical exams. For instance, in [6,69] the analysis of urine
samples is used to track the subject’s energy expenditure. The patient is asked to collect urine samples
at a fixed time which is subsequently analyzed.

2 4 6 8
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External Video Annotation : non wearable cameras

Video annotation with wearable camera

Self-labeled activities diaries audio segmentation
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Figure 14. Distribution of the different kind of activities/physical behaviors/stationary phases
annotations depending on environments.

Observation of an examiner to annotate is more used in semi-FLEs than in FLEs where it is
practically impossible to implement. Wearable or fixed cameras and GPS are used at a similar rate
between FLEs and semi-FLEs studies. Besides, it appears that semi-FLEs enable a better control of
performed activities and allow for more accurate annotations of these activities. It may result in an
optimized computation of classifiers’ accuracies. It is interesting to note that GPS are sometimes
used to detect stationary walking phases using trajectory reconstructions (using a standard inertial
navigation algorithm termed pedestrian dead-reckoning (PDR) on a study [81]). This can allow to
study the physical capacity of a subject on these phases and to potentially compare the results obtained
in FLEs with those obtained in fully controlled environments.

Similarly, some questionnaires are also found to assess fatigue and ability to perform some
physical activities and then study the physical capacity of a subject: Multidimensional Fatigue
Inventory (MFI) [72], Nottingham Activity of Daily Living Scale [63], and Physical Activity Readiness
Questionnaire (PAR-Q) [88,105]. These questionnaires are a means of completing the annotations
because it permits to assess as good as possible the physical performance of patients.

5. Algorithms

At the exception of several studies such as [40,44,82], most studies (37 papers) rely at some point
to classification algorithm that automatically detect the activities performed by the subjects [17,41,93].
Activity classification can be set up as a preamble to certain other objectives of the studies and makes
it possible to achieve them. Such a classification is performed for instance to assess the physical
activity of certain patients with diseases in a detailed manner [63]. It can also be needed to be able to
compare efficiently laboratory acquisitions and FLEs’ acquisitions [77] and to compare the impact of
the placement or of the types of wearable sensors [17,62]. It can also enable to validate the feasibility
of a specific sensor to assess PA in free-living settings [38].
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The common base of these studies, which is the classification of activities, allows for their
comparison, particularly in terms of features, algorithms, and performance results. The aim of this
section is therefore to focus on these studies and to provide an overview of the current state-of-the-art
performances. Table 3 displays the main features retained in specific subcategories (described
in Section 5.1), while Table 4 summarizes characteristics of these studies. Section 5.1 details the
features that are computed from raw signals, and Section 5.2 provides insights on the classifiers used
for activities’ classification.

5.1. Features

When portable sensors are installed on participants during their wandering in free-living
conditions, research teams recovered raw signals whose nature differed according to the type of
sensors implanted (linear accelerations for accelerometers, angular velocities for gyroscopes or both
for IMUs, for example). From these raw data, it is possible to calculate a multitude of parameters that
allow quantitative PA analysis. These parameters can be basic statistics (mean or standard deviation of
accelerations over a certain duration for example) or derived from advanced algorithms (step lengths,
average swing time, etc.). It has been shown in the clinical field that the latter can sometimes be used
to define the quality of a walking category (rhythm, stability, springiness, etc.) of a participant [19].

Most simple features are Time-Domain (T-D) features that are only based on the timings of
relevant gait events. T-D features are the parameters related to a notion of evolution in time of certain
particularities of the obtained signal (standard deviation, means, etc.). More sophisticated features
can be computed in the frequency domain, by focusing for examples on some relevant frequency
bands: those are the Frequency-Domain (F-D) features. F-D analysis dwells upon the number of times
some events occur in the recorded signals and to the notion of periodicity. From Table 4, it appears
that the majority of the features retained for the classification of activities are T-D features (29 studies
use T-D features [7,42,99,106] while only 15 studies use F-D features [17,41,77,78]). Table 3 details the
most used parameters for each of these feature categories (T-D features, F-D features, and derived
parameters) retained to set up the activity classifiers. T-D features such as variation coefficients,
medians or standard deviation are calculated either on raw signals obtained by the sensors (linear
acceleration and angular velocity) or on other specific parameters whose value is computed over each
instant of time (vector magnitude and signal magnitude area). In addition, some specific parameters
are used by several studies (Vector Magnitude (VM) [15,106], Signal Magnitude Area (SMA) [37,108] ...).
VM incorporates the acceleration values from the cranio-caudal as well as the anterio-posterior and
medio-lateral axes. SMA is a statistical measurement of the magnitude of a variable quantity (notably
linear acceleration values). It it also to be noted that the sizes of the sample windows on which signals
are analyzed are various (from 1 s [38] to 5 min [42]) but are often non-overlapping (only one study
uses overlapping windows [67]).

Table 3. Details of the features mostly selected to feed activity classifiers according to their associated
categories (T-D Features, F-D Features, and derived parameters).

T-D Features F-D Features Derived Parameters

Mean
Coefficient of Variation

Standard Deviation
Variance
Min, Max
Median

Autcorrelation Coefficients
25th and 75th percentile

Dominant Frequency
Dominant Frequency Magnitude

Spectral Power
Spectral Energy

Speed
Step/Stride Time

Step/Stride Velocity
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5.2. Classifiers

When these parameters are calculated and listed, they can be used as variables for each
observed activity in order to train classifiers. Every time an observation is done and associated with
features’ values, a training example is created. A set of these training examples is created when several
activities’ observations are performed. Each of this example is thus constituted of an input vector
(features’ values of the associated observation) and of an output value (the type of activity performed
during the associated observation) which is the label of the training example. The accumulation of
these examples turns out to be labeled training data. Algorithms used in classifiers go through this
data in order to determine the output value of an new incoming example. Some work can be put in
place in order to define which features are either redundant (two features are redundant when their
values are correlated) or irrelevant and which are thus to be kept to perform the classification: this is
feature selection. Almost half of the studies classifying activities (18 of them) used feature selection
processes such as Principal Component Analysis (PCA) [41,99] or others [54,83,93]) before setting
up their classification system. The vast majority of these studies obtained classification accuracies
(accuracy or sensitivity) beyond 85 percent. Accuracy is the proportion of true results (true negative
or true positive) while sensitivity is the probability of a classification to identify a specific activity on
a signal which truly corresponds to this activity. The classification algorithms are varied and each has its
advantages and disadvantages according to the goals sought or according to the established databases.
All algorithms referenced in Table 4 are supervised learning systems. This corresponds to a learning
where the inputs, i.e., features, and the outputs, i.e., the associated types of activity, are known when
data is processed. Concerning activity classification, unsupervised learning is much less predominant
than supervised learning [111]. The fact that the labelling of activities can be carried out through
annotations whose implementation is increasingly becoming more practical over the years (better
quality cameras, use of trajectory reconstruction, etc.) may explain this difference.

It is important before beginning the discussion about classifiers and their associated precision
rates to clarify that it is very complex, if not impossible, to compare the different studies selected on
this specific topic. Indeed, depending on studies, classifications are carried out on a different number
of activities carried out under conditions that sometimes differ drastically from one study to another
(instructions, sensors, etc.). All these factors when added to others (positioning of sensors, cohorts, etc.)
do not allow valid comparisons to be made between studies with regard to their classifiers and their
associated algorithms.

It appears that the majority of the studies have an interesting average rate of classification precision
(31 analyses obtain a precision or sensitivity higher than 85 percent [77,78,88,94]). It should also be noted
that certain types of classifiers are recurrent, notably Random Forest (RF) (11 studies [83,85,100]) and
Decision Trees (DT) (eight studies [38,61]), Support Vector Machine (SVM) (12 studies [43,76,84,94]),
Bayesian approaches (Naive Bayes (NB)) (three studies [64,76,94]), K-Nearest Neighbor (KNN)
(four studies [83,84,93,94]) and Neural Network (NN) (four studies [15,43,76,108] with notably
Multi-Layer Perceptron (MLP)). Other classifiers (K-Means (K-M), Linear Regression (LR)) are also
put in place in some studies but in less frequent manners and other methods and ancillary methods
can also be implemented (Hidden Markov Model (HMM), Receiving Operating Characteristics (ROC),
and Adaptation Detection Chain (ADC)). In addition, it is important to note that these papers may have
several approaches. Indeed, some teams decided to compare or test several types of already known
classifiers such as those cited above [67], while other teams combined some of these classifiers with
other algorithms specific to their work in order to set up custom classification systems [38,88]. It is also
possible that no existing classifiers are used and that everything is based on an algorithm designed for
the study [62,63].
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Table 4. Summary of all the specificities of the studies selected for this review which classify performed activities. The features retained as well as the nature of the
classifiers and their precision are detailed (acc: accuracy, se: sensitivity).

Features Algorithms

Date Reference Number of
Activities

Time
Resolution

Features
Selection

T-D
Features

F-D
Features VM SMA Angles,

ROM Corr MAD Classifier(s) Type Accuracy

2010 Khan et al. [108] 15 3.2 s
√ √ √ √

NN Acc = 97.9%

2012

Clements et al. [99] 2 4 s PCA
√ √

Other Acc = 90%→ 95%

Tran et al. [83] NC NC Performed
K-M, KNN, RF

SVM, RDF SVM
Acc = 71%→ 96%

Zhang et al. [76] 15 NC
√

DT, SVM, NB, LR, NN Semax = 97.20% avg

2013

Lockhart et al. [16] NC NC Wavelet Se = 96.78%

Leutheuser et al. [88] 13 NC
√ √

KNN/SVM Acc = 89.6% avg

Perriot et al. [7] 3 5 s
√ √

Other Se = 77%→ 94%

2014
Gao et al. [94] 8 1 s Performed

√ √ √ √ √
SVM, NB, kNN, DT 89.5%→ Acc=96.8%

Del Rosario et al. [67] 8 1.25 s DT Se = 69.2%→ Acc = 82%

2015

Chernbumroong et al. [15] 13 NC FC
√ √ √

MLP, SVM, RBF, NN Acc = 97.20% avg

Massé et al. [106] 8 NC Other Acc = 90.40%

Papadopoulos et al. [87] NC NC NC Other + ADC

2016

Ayachi et al. [18] 8 160 ms FC
√ √ √

ADC Se = 97% avg

Hu et al. [100] 4 Groups 30 s RF
√

RF (100 DT) Acc = 99.71% avg, Se =
84.62%→ 99.9%

Brodie et al. [77] 1 1.2 s Performed
√ √

DT Acc>97%

Ellis et al. [17] 4 1 min RF
√ √ √ √ √

RF, HMM Acc = 84.6%→ 89.4%

Kerr et al. [85] 5 1 min
√ √

RF Acc = 51%→ 77%

Alam et al. [41] 13 NC PCA
√ √

RF Acc = 91.80%

Weiss et al. [42] 3 5 min
√ √

LR Acc = 90.2%→ 94.3%

2017

Pavey et al. [78] 4 Groups 10 s Performed
√ √

RF Acc = 92.70%

Nguyen et al. [63] 7 NC
√ √

Other Acc = 100%
avg Se = 97.6%

Fullerton et al. [93] 8 3 s Performed
√ √ √ √

DT, SVM, kNN Acc>95%

Chowdhury et al. [64] 5 5 s Correlation
Based

√
NB Acc = 65%→ 79%
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Table 4. Cont.

Features Algorithms

Date Reference Number of
Activities

Time
Resolution

Features
Selection

T-D
Features

F-D
Features VM SMA Angles,

ROM Corr MAD Classifier(s) Type Accuracy

2018

Nguyen et al. [70] 7 NC
√ √

Other Acc = 90% avg, Se = 90.8%

Vähä-Ypyä et al. [62]
(FLE) 4 6 s

√ √ √
ROC Curve Other

Vähä-Ypyä et al. [62]
(Semi-FLE) 4 6 s

√ √ √
ROC Curve Other

Derungs et al. [89] 51 1 min
√

LR Se = 80%

Nazarahari and Rouhani
[60] (FLE) 12 NC

√ √
SVM Acc = 99%

Kerr et al. [84] 6 5 s
√ √ SVM, NB, DT, RF, HMM,

kNN Acc > 80% (RF)

Fiorini et al. [43] 8 3.5 s
√ √

DT, SVM, NN Acc > 92%

Cajamarca et al. [61] 8 NC NC NC DT Acc = 93.50%

Ahmadi et al. [66] 4 Groups +
Others 10 s RF

√ √
RF, SVM, BDT Acc = 76.1%→ 89%

2019

Awais et al. [37] 1 1 s to 10 s Three Methods
√ √ √ √

SVM Acc>80%

Narayanan et al. [54] 12 5 s Performed
√ √ √ √ √

RF Acc = 53%→ 99%

Crowley et al. [65] 8 2 s
√

Custom Se = 63%→ 100%

2020
Marcotte et al. [38] 1 1 s

√ √
RF,DT Se = 60.4%→ 93.5%

Garcia-Gonzalez et al. [86] 4 1 s Performed
√

SVM Acc = 67.22% avg
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6. Discussion and Conclusions

In this article, we have reviewed 58 articles dealing with the use of IMUs in FLEs settings.
FLEs are environments that are not controlled by the experimenter. The participant thus has no

indication of the environment and complete freedom of movement. On the opposite, we consider
environments established by research teams as semi-FLEs; these can include the laboratory, indoors or
outdoors space, and even replicas of apartments.

First, it appears from this overview that IMUs and accelerometers stand out as the most commonly
used sensors. Their main location turns out to be the wrist as this is convenient to use it thanks to
the development of watch sensors. The specifics of the free-living environments in which the studies
take place is also a major factor of distinction between the reviewed works. It turns out that two types
of such environments emerge: FLEs (environments that are not controlled by the experimenter) and
semi-FLEs (environments established by research teams: laboratories, indoors out outdoors space, etc.).
semi-FLEs’ conditions provide a smooth transition from controlled to full ambulatory settings that is
to say FLEs’ conditions. Within those environments, the three most common types of activity studied
in the reviewed works are walking, standing and sitting. According to the studies referenced in
this review, the instructions given to participants to carry out these activities vary in their degree of
explicitness (some impose activities, others suggest them, while others leave the subjects complete
freedom in their natural environment). In addition, the recording times for taking measurements
via motion sensors vary from one research team to another. The short recording durations (less than
five hours) are often conducted in semi-FLEs’ studies while the FLEs’ studies setup longer recording
times (three days or more). In all FLEs studies, annotation has a decisive role in data collection.
The quantity, quality, and accuracy of the data thus depend on new ways of annotating, hence its
diversity: diary, video, or tape recording. As soon as the implementation of sensors and the setup of the
protocols are put in place and enable measurements, the computed data are to be processed. In several
contexts, activity classification is a crucial step for the study of PA. The classification algorithms
often rely on T-D features while F-D features are less commonly used. Additional features such as
VM or SMA are also employed. After the selection of these features that a large part of the studies
put in place (PCA, etc.), classifiers are used to classify the activities themselves. Certain types of
classifiers are recurrent (RF, SVM, and DT) and constitute a popular choice for the task. Finally,
it appears that the majority of studies in free-living conditions use protocols with a wide variety of
implementations. Nevertheless, studies in FLEs conditions turn out not to be completely standard yet
while semi-FLEs conditions are still commonly used. With regard to protocols’ characteristics such
as instructions, measurement times or annotations, certain trends are emerging (in FLEs conditions:
longer measurement times, annotations by the participants themselves or by monitoring systems
other than examiners are becoming more popular, etc.). Within the studies evaluating the activity of
participants in uncontrolled environments, some fairly clear tendencies seem to emerge: the massive
use of accelerometers and IMUs compared to gyroscopes; the fact that these sensors are mainly
positioned on the wrist, lower back, or waist; the predominance of activities such as walking, standing,
and sitting in the protocols; and the use of time-domain features for the implementation of classifiers.
These few observations, which make it possible to identify choices that are generally shared between
studies concerning the implementation of devices and protocols in particular, may prove to be the
main recommendations for future studies. Nevertheless, the differences between the studies are still
notable and numerous, which prevents to bring out a standard approach to assess physical activity in
free-living environments.

One recurring question in this review is linked to the notion of environment and to the distinction
between semi-FLEs and FLEs. As a matter of fact, a shared feature of this continuum of protocols is
the psychological dimension of the participants and its impact on their behavior. The white coat effect,
for example, is caused by the presence of medical personnel or environment and influences the
physiological measurements of the participants and their behavior [112]. Likewise, it is observed
under experimental conditions that the presence of an experimenter influences the participant’s
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performance [113]. The Hawthorne effect, observed in people who are aware of participating in
an experiment, which results in an increase in the motivation of the participants to perform the test
and thus in the observed performance. Thus, the “artificial” side of a study is to be taken into account
in the analysis of results, even in FLEs. Whether it is through social interaction or by knowing that we
are part of a test, a psychological effect affects our behavior. Other psychological tendencies should
be taken into account in the analysis of human physical activity. The trend to compare themselves to
others illustrated by the “better than average” effect of not overestimating their abilities in comparison
to others, it is a social comparisons effect that allow us to improve and measure our skills. There is
also a current trend towards self-evaluation with the development of self-tracking applications and
increasingly connected objects. Is the degree of accuracy of the IMUs identified in this review adequate
for such use? Can the well-developed IMUs or other sensors reviewed in these studies be implemented
in such conditions (self-evaluation) is it the field of more commercial sensors?

Another fundamental question is linked to the potential impact of this research field in
public health. Indeed, the increase in NCDs, caused by the decrease in physical activity and the
increase in the consumption of highly processed food with the rise of supermarkets and hypermarkets
in the middle of the 20th century, is established. The collective awareness has led to the development of
connected technology allowing the monitoring of energy expenditure and sports activity (smartwatch,
pedometer in smartphone, connected weight watchers, etc.). Today, there is a willingness to control
and measure physiological information, moreover: Would it be possible to integrate IMUs into
connected objects in order to be able to quantify physical activities more precisely and in FLEs
conditions? Would it be possible to link the use of IMUs to this wave of hyperconnection and to
monitor one’s energy expenditure and physical activity? Thus the psychological dimension affects
both decision making and actions. It is to be taken into account in the study of human activity, both
from an experimental point of view, and for future monitoring in FLEs settings. Accurate sensors
start though to become a must for FLEs physical activity assessment as participants perceived
them more useful than smarthome settings for instance. IMUs are needed and appreciated. In
particular, since the end of the 1990s, the smartphone has been continuously improved to become
a technologically advanced object. It now includes features used in the biomedical and research
fields (geolocation, magnetometer, accelerometer, high quality camera, etc.). It is a widely used
devices, used both professionally [86,114] and personally. The smartphone is already used through the
development of applications for medical purposes. There is a real need to reduce healthcare costs and
the complexity of equipment in the biomedical field. However, the smart phone is relatively affordable,
noninvasive biomedical facilities, which gives it definite advantages in the research community. Thus,
the smartphone could prove to be an interesting device for studies in FLEs. Nevertheless, for some
biomedical purposes, a high degree of accuracy is required. A recent study from 2020 [115] compares
the use of smartphones and an application with inertial motion sensors used in research. Despite the
good results in step detection, they observe a limitation in the use of the smartphone in the detection
of physical activity in everyday life. Alongside the smartphone, other inertial sensors for consumer
use are on the market (Fitbit) and allow activity detection. The comparison of these sensors with
sensors used in the research community shows a good capability of consumer sensors for activity
detection [116], but still less accurate than IMUs used in the research field which does not make it an
adequate substitute for FLEs studies [117]. Furthermore, the lack of transparency and the difference in
the algorithm used for step and activity detection with those sensors is a hindrance to the use of these
sensors in the research community. Therefore, despite the advantageous qualities of the smartphone
and other wide public sensors for studying in FLEs, it can be limited due to the lack of standardization
and accuracy compare to IMUs used in research field. It should be noted that the distinction between
sensors intended for the general public and sensors intended for the research field is subjective. It is
based notably on the accuracy of the measurements and row data availability. Studies have evaluated
the validity and reliability of consumer-grade sensors when used on elderly cohorts [118] and have
shown that the performance of these sensors could be negatively impacted by the specificities of these
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populations and by certain conditions of use (outdoor use, walking aids, etc.) [119,120]. Thus, these
sensors can hardly be used in a standard way in the research field as opposed to sensors considered as
research-grade sensors.

Throughout this review, the diversity of the studies included is noteworthy. In spite of the
search filters, the studies are very disparate, at protocols level, where we have shown the diversity
of experimental conditions established. There is a splintering of studies according to the sensors
brand used which implies a lack of the same sensors configuration (axis definition, accuracy,
sampling frequency, etc.). Each brand has its own software and therefore of handling by scientists.
This diversity is also found in the dataset used by each study. A large majority of studies record their
own data with recruitment and testing of participants. This makes it possible to have customized
data very specific to each study. Very few studies included in this review use already existing
dataset [57,64,84], and even fewer aim at creating an open access dataset. There is no standardization
of dataset between the different articles The diversity and lack of standardization of studies contributes
to a compartmentalization of human activity research. This disparity may be a hindrance to research,
which justifies the need for unification. One way to unify the studies would be the creation of a public
and universally accessible dataset, as in the recent study by Garcia et al. [86]. Additional ways to unify
the studies could be to work on a common goal such as the challenges (see, for example, in [121]),
to have a shared aim for the whole community [121]. Although progress has been made in the detection
of physical activity using inertial motion sensors, longer, larger, and more accurate studies are needed
in order to be able to track patients longitudinally.

Finally, recent studies highlight the need for more accurate real-time activity classification,
including the use of machine learning, in order to continue the study of activity in larger
population samples. Several studies show that longitudinal monitoring in FLEs allows to follow the
evolution of the patient’s [68] and therefore their condition. Activity classification was initially performed
by pattern recognition. Although this method has permitted improvements in activity classification, it has
limitations being sometimes heuristic and limited by human knowledge [122]. Since the last decade,
machine learning, and more particularly Deep Learning, has allowed more accurate activity classification
through NN. This enables to have a design feature and lean more higher level and meaningful features
by training an end to end neural network. This is why deep learning is an ideal approach for activity
classification and is being explored since the last decade. Deep Learning includes several models
that permits different ways of data computation. Studies are now emerging with different models
(Validation Neural Network, Convolutional Neural Network, Long Short-Term Memory (LTSM), etc.) and
testing them on dataset in order to perform activity classification as accurately as possible. In particular,
the use of recurring neural networks such as LSTM could be promising as they allow to remove the
feature extraction step and directly work from raw signals. These techniques have successfully been used
for activity classification in controlled environments [123]. The implementation of LSTM networks in
FLEs or semi-FLEs could therefore represent a future possibility to improve the performances The use
of IMUs sensors coupled with data analysis with Deep Learning models is becoming more and more
frequent [124,125] and allows a more accurate analysis. This highlights, once again, the need for dataset
pooling in order to have a larger library to allow better testing of these different models.
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